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Abstract: An important requirement for the practical implementation of empirical diagnostic systems is the capability of 

classifying transients in all plant operational conditions. The present paper proposes an approach based on an ensemble of 

classifiers for incrementally learning transients under different operational conditions. New classifiers are added to the 

ensemble where transients occurring in new operational conditions are not satisfactorily classified. The construction of the 

ensemble is made by bagging; the base classifier is a supervised Fuzzy C Means (FCM) classifier whose outcomes are 

combined by majority-voting. The incremental learning procedure is applied to the identification of simulated transients in 

the feedwater system of a Boiling Water Reactor (BWR) under different reactor power levels. 

Keywords: Classification; Fuzzy C-Means (FCM) Clustering; Bagging; Ensemble; Incremental Learning; BWR Nuclear 

Power Plant; Transient Identification. 

1. Introduction 

Monitoring is a continuous real-time task of determining the conditions of a physical system, by recording information, 

recognizing and indication anomalies in the behavior (Simani et al., 2002). A fault diagnosis system is a monitoring system 

that is used to detect faults and diagnose their location and significance in a system (Chen and Patton, 1999). The diagnosis 

system performs the following tasks: fault detection—to indicate if a fault occurred or not in the system, fault isolation—to 

determine the kind, location and time of detection, and fault identification—to estimate the size and nature of the fault. The 

first two tasks of the system: fault detection and isolation are considered the most important. Fault diagnosis is then very 

often considered as fault detection and isolation (Simani et al., 2002). Here the term diagnosis indicates recognizing and 

indication transients and anomalies in the system behavior. 

A number of diagnostic methods based on the advances of soft computing have been proposed for transient identification in 

nuclear systems (Hines, et al., 1996; Reifman, 1997; Embrechts and Benedek, 2004; Na, et al., 2004; Evsukoff and Gentil, 

2005; Zhao and Upadhyaya 2005; Zio and Baraldi, 2005; Razavi-Far, et al., 2009). However, one factor that has limited their 

practical application is the difficulty of recognizing transients at different plant operational conditions, e.g. power levels 

(Uhrig, 1999). The objective of the present work is to overcome this limitation by proposing a procedure of empirical 

classification by incremental learning of transients at different plant conditions. The procedure is realistically applicable, with 

new examples of transients in new operational conditions becoming gradually available in time. Since the proposed 

classification procedure is based on the use of supervised learning algorithms, it requires a training phase in which some 

examples of patterns formed by the signal measurements observed during the transients (input) and the corresponding class 

(output) are available. Furthermore, we assume that the classes of the transients do not change at the different plant 

conditions, i.e. there can be a modification of the relationship between the inputs and the output, but the algorithm cannot be 

used to classify new classes of patterns. 

One approach for learning new data (e.g. coming from new transients of new generated conditions) involves discarding the 

existing classifier and retraining a new one using all data (e.g. of all transients) that have been accumulated thus far. This 

approach, however, results in loss of all previously acquired information, a phenomenon known as catastrophic forgetting 

(Polikar, 2006), and may be infeasible for real diagnostic systems due to the computational and financial efforts necessary for 

each model retraining. In order to avoid retraining a new model each time a new dataset becomes available, the classification 

algorithms must be able to learn the novel information content of the new data without forgetting the previously acquired 

knowledge. A further desiderata, important in those cases in which the datasets previously used for the model training may be 

lost, corrupted or otherwise unavailable, is the possibility of updating the model without requiring access to the previously 

seen datasets.  



The ability of a classifier to learn under these circumstances is usually referred to as incremental learning (Polikar et al., 

2001).  

A further challenge comes from the fact that the input (transient data of the measured signals) – output (corresponding fault 

class that originates the transients) relationships may change in different operational conditions. This problem is usually 

termed learning in a non-stationary environment. In particular, in the problem addressed in this work, the modification of the 

environment is assumed to be cyclic, since the plant usually returns to work in one operative condition previously left. 

Recently, multiple classifier-based algorithms have been proposed for incremental learning in non-stationary environments. 

The proposed algorithms generate and then combine an ensemble of classifiers, where each classifier is trained on a different  

snapshot of the data. In particular, the following types of ensemble-based approaches have been distinguished (Kuncheva, 

2004): (i) a fixed ensemble whose combination rules (weights) are changed based on the changing environment (dynamic 

combiners); (ii) an ensemble where new data are used to update some of the classifiers thanks to an on-line learning 

algorithm; (iii) a new ensemble structure obtained by altering the old ensemble structure. 

In this work, the third approach is embraced within a procedure of modification of the ensemble structure when the 

classification in the current environment is not satisfactory. Firstly, an ensemble of classifiers is built using the datasets 

available. The ensemble is built according to the method proposed in (Baraldi et al., 2010): the base classifier is a supervised 

Fuzzy C Means classifier (Zio and Baraldi, 2005); an ensemble of them is built on different bagging sets of the available data 

(Breiman, 1996); the single classifiers outcomes are combined using a majority-voting scheme (Parhami, 1994). When the 

plant starts working in a new operational condition and a corresponding new dataset of data becomes available, the 

classification performance of the ensemble previously built is verified and, in the case in which it is not satisfactory (i.e. if the 

fraction of patterns correctly classified is lower than a fixed threshold), the ensemble is updated by adding new classifiers. 

This is actually done by creating an additional ensemble of classifiers, each base classifier trained by using a different 

bagging set of the new dataset. Finally, the old and the new ensembles of classifiers are merged into a single ensemble of 

classifiers formed by all the classifiers of the new and old ensembles. The procedure is repeated each time a new dataset 

describing a new operational condition becomes available. 

The capability of the overall ensemble system to identify faults that initiate from different plant operational conditions has 

been tested on an application regarding the identification of simulated transients occurring at different reactor power levels in 

the feedwater system of a Boiling Water Reactor (BWR) (Puska and Norman, 2002). 

The remainder of the paper is organized as follows. Section 2 presents a brief description of the problem statement of 

incremental learning in a non-stationary environment. Section 3 illustrates an ensemble-based scheme for incremental 

learning, describing the method and algorithm. Section 4 describes how the ensemble-based scheme is used for transient 

identification in the feedwater system of a BWR at different power levels. Finally, conclusions are drawn in Section 5. For 

completeness: the procedure of ensemble construction and its algorithm are reported in Appendix A and the supervised, 

evolutionary-optimized FCM clustering algorithm used to train the base classifiers of the ensemble is briefly described in 

Appendix B. 

2. Incremental learning in a non-stationary environment  

Let us consider a plant which can work in several different operational conditions. We assume that at time jt , 1,...,j n , a 

dataset 
jS  formed by 

jN  patterns  ,j j

k kx   becomes available, with 
j

kx  representing the generic k-th signal measurements 

observed during a transient, and ,j

k =1,…,c the label assigned to the corresponding class of the transient. Notice that the 

total number of possible classes of the patterns 
j

kx  is assumed to be fixed and equal in all the datasets 
jS . In general, the 

unknown mapping function between 
j

kx  and 
j

k  may vary in different operational conditions, i.e. the class boundaries in the 

input space may be different in the different datasets 
jS , which contain transients occurring with the plant in different 

operational states.  

The final objective of the present work is to develop a classification algorithm able to correctly classify transients  of the 

signal measurement vector x , independently from the plant operational conditions. 

  



3. An ensemble-based procedure for incremental learning in a non-stationary environment  

The idea underlying ensemble-based classification is to create many classifiers and combine their outputs in a way to 

improve the performance of a single classifier. This requires that individual classifiers perform well in different regions of the 

feature space and make errors on different patterns, which are balanced out in the combination. Intuitively, if each classifier 

makes different errors, then a strategic combination of these classifiers can reduce the total error. The overarching principle 

in ensembles is therefore to make each classifier as unique as possible, particularly with respect to misclassified instances. 

Specifically, we need classifiers whose decision boundaries are sufficiently different from those of others (Polikar, 2006). 

Various techniques have been suggested for obtaining diversity in the base models of an ensemble, e.g. using different 

training parameters (Hansen and Salamon, 1990), different training patterns (Breiman 1996), different feature subsets (Zio et 

al., 2008) and different learning methods for each classifier of the ensemble (Xu et al., 1992). 

Here, the approach adopted in (Baraldi et al., 2010) where different training patterns are used to train individual classifiers is 

briefly described. The datasets are obtained through the resampling technique of bagging (Breiman, 1996) from a dataset 

containing all the available training patterns. Bagging, short for bootstrap aggregating, is one of the earliest ensemble-based 

algorithms (Breiman, 1996; Breiman, 1999) and is based on the random sampling of the datasets, usually with replacement, 

from the entire training dataset. The main structure of this ensemble construction scheme is shown in Figure 1. With respect 

to the construction of the base classifier of the ensemble, the supervised FCM algorithm is considered (Zio and Baraldi, 

2005). In this classification algorithm, the information regarding the known, physical class  of the k-th pattern is used to 

supervise an evolutionary algorithm for finding c optimal Mahalanobis metrics which define c geometric clusters as close as 

possible to the a priori known physical classes (Yuan and Klir, 1997). The Mahalanobis metrics are defined by the matrices  ,   

whose elements are identified by the supervised evolutionary algorithm so as to minimize the distances   between the patterns    

belonging to class   and the class prototype, i.e. the cluster center  . The iterative training scheme is summarized in Figure 

xyz. Once the classifier is constructed, a new test pattern x  is classified, in fuzzy terms, by computing its value of 

membership to the c  clusters, based on the Mahalanobis distances of matrices 
ci

M  . Given the ordered corresponding 

between classes and clusters the fuzzy membership information is finally used for the crisp assignment of the pattern x  to the 

class with the largest value of membership. 

The performance of the overall bagging ensemble approach has been verified by comparison with a single supervised, 
evolutionary-optimized FCM classifier with respect of the task of classifying artificial and nuclear transient datasets. The 
results obtained indicate that in the cases of datasets of large or very small sizes and/or complex decision boundaries, the 
proposed bagging ensemble improves the classification accuracy. However, the bagging approach does not allow 
incremental learning in a non-stationary environment since it requires that all the training patterns, which are used for 
training the ensemble base classifiers, be available in advance. 

In order to overtake this limitation of the bagging algorithms such as (Baraldi et al., 2010), the basic idea of the procedure 

proposed in this work for adding the capability of incremental learning is to add new classifiers to an ensemble of classifiers 

whenever the current classification performance is not satisfactory due to the modification of the environment. This approach 

allows the ensemble to learn new information, without forgetting the previously acquired knowledge which is contained in 

the old classifiers which are kept in the ensemble. To control the proliferation of classifiers in the ensemble, new classifiers 

are added only if the transients occurring in the new operational condition are not satisfactorily classified. According to this 

procedure, diversity in the base models of the ensemble is obtained by using different training patterns. However, notice tha t 

the approach differs from the bagging approach in (Baraldi et al., 2010) since the different training datasets are not all 

obtained from the same dataset, but they come from different datasets corresponding to different operational conditions. 

The diagnostic system is developed according to the following steps (Figure 2.b): 

1) Fix the minimum classification performance 
*p  which is always required to the diagnostic system and a fraction   

indicating the maximum performance reduction which is acceptable when the diagnostic system is used to classify patterns 

corresponding to different operational conditions from those used to train the ensemble system.  

2) At time
 1t  when dataset 

1S  becomes available, an ensemble system 
1E  is built. The ensemble is formed by 

1T  base 

classifiers 
1
lh , 

1,...,1 Tl  , built using bootstrapped replicas of the training data 
1
trainS . In particular, 

1T  bagging iterations are 

performed, each one based on:  

 



1.a) Resampling: the creation of a new training dataset by randomly drawing, with replacement, a fraction F of 

the training patterns contained in 1
trainS . To ensure that there are adequate training samples in each subset, 

relatively large portions of the samples (F=0.75 – 1.00) are drawn into each subset. This causes individual 

training subsets to overlap significantly, with many of the same instances appearing in most subsets, and some 

instances appearing multiple times in a given subset. The algorithm used to construct the bagging ensemble is 

briefly reported in Appendix A.   

 

1.b) Training: the building of a supervised, evolutionary-optimized FCM Classifier using the training data 

obtained in 1.a) and the procedure reported in Figure xyz. 

 

3) The performance 1p achieved by the first ensemble 1E  on the patterns of the dataset 
1
testS  not used for the training of the 

ensemble classifiers in step 1 is computed. In this respect, the test patterns are classified by the 1T  supervised FCM classifiers 

of the ensemble and the response of the single classifiers are aggregated according to the majority voting method (Appendix 

1). 

4) The achieved performance 1p  is compared to a minimum required classification performance *)1(* pp  . If the 

performance 1p of 1E  is not satisfactory, i.e. 1p p , e.g. due to the presence of insufficient or poor quality data in 1S , at 

time t2 when dataset 2S  becomes available go to 7) in order to try to increase the classification performance by adding new 

classifiers to the ensemble, otherwise the diagnostic algorithm 1EE   can be used for transient classification until time t2. 

5) At each time , 2, , ,jt j n  the classification performance jp  achieved by the previously developed ensemble 1jE   on 

patterns of the new available test dataset 
2
testS  is computed. 

6) The achieved performance 
jp  is compared to   )1*,max()(* 1 jppjp  . The term   11  jp  is considered in 

order to guarantee that the classification performance does not remarkably decrease when the diagnostic system is used for 

the classification of transient occurring at different operational conditions. If the classification performance 
jp  is 

satisfactory, i.e. )(* jpp j   the ensemble system is left unmodified. In this case at time 1jt  when the new dataset 
jS  

becomes available, go to 5). Otherwise, if )(* jpp j  , go to 7) in order to modify the ensemble. This usually occurs when 

the operational conditions verified in jS  are significantly different from those previously experimented.  

7) The ensemble system is updated by adding jT  base classifiers 
j

lh , 
jTl ,...,1 , trained with bootstrapped replicas of jS  

according to the procedure in 1a) and 1b) applied to the data of jS . Thus, the obtained classification model E is an ensemble 

system formed by the union of the previous classifiers of E and the jT  classifiers newly added, i.e. an ‗ensemble of 

ensembles‘. 

The main structure of the proposed incremental learning scheme is presented in Figure 2.a. 

Codice campo modificato



Subset 1

Subset i

Subset 

Resampling F% of Training Dataset

1jE 

1

1

jC 

1j

iC 

1

1
j

j

T
C 




1jT 

Training 

Testing

1jS 

Operating 

Condition 

j-1

Subset 1

Subset i

Subset

Resampling F% of Training Dataset j

1FCM

j

j

T
FCM

j

iFCM

1

jC

j

iC

j

j

T
C

jE

jT

Operating 

Condition 

j

jS

Training 

Testing



j 1

1FCM 

j 1

iFCM 

j 1

j 1

T
FCM 



 

Figure 2.a. Main structure of the ‗ensemble of ensembles‘ scheme for incremental learning 

 

Figure 2.b. Flowchart of the classifier-ensemble incremental-learning procedure  



Considering a generic time instant t  at which an incremental learning ensemble system has been developed, the 

classification of an incoming new test pattern x  is done by using the majority voting method, i.e. the class label which is 

supported by the majority of the individual classifiers is assigned to x . In case the number of votes to different classes is 

equal, the class is assigned randomly among those classes with largest total votes. 

4. Application to nuclear transient identification 

In this Section, the capability of the proposed procedure is tested with respect to the classification of transients in the 

feedwater system of a BWR. The diagnosis considers three power operational levels, i.e. 50%, 80%, and 108% of full power. 

The corresponding transients have been simulated by the HAMBO simulator of the Forsmark 3 BWR plant in Sweden (Puska 

and Noemann, 2002).  

The considered faults occur in the section of the feedwater system where the feedwater is preheated from 169°C to 214°C in 

two parallel lines of high-pressure preheaters while going from the feedwater tank to the reactor. Figure 3 shows a sketch of 

the system. A set of six faults, F1-F6, that are generally hard to detect for an operator have been chosen for this application 

(see (Roverso 2004) for their description).   

 

Figure 3: A sketch of the feedwater system of the BWR 

Among the 363 measured signals, only the 5 reported in Table 1 have been used for the fault classification in the two case 

studies here considered. These signals have been chosen considering the results of the application of a feature selection 

algorithm and some benchmark tests (Zio et al., 2006).  

                                           Table 1: Signals selected for the fault classification. 

Signal Number – Name Unit 

1- Temperature drain 4 before VB3  C  
2- Temperature feedwater before EB2 train B  C  
3- Temperature after EA1 (high pressure preheater A1) MPa  
4- Temperature of condensate after EB2 train A C  
5- Position valve for level I EB4 %  

Three datasets, 
50 80 108, ,S S S  have been considered, containing patterns taken from transients simulated with the plant 

working at 50%, 80% and 108% of full power, respectively. More specifically, each dataset is formed by 1800 patterns taken 

from three transients for each of the 6 faults, differing in the degrees of leakage and valve closure. The data relative to the 



selected 5 signals were recorded with a sampling frequency of 1 Hz. All transients start after 60 seconds of steady state 

operation. Given that the goal is early fault diagnosis, only the data from 70 seconds after the beginning of the transients have 

been considered for each transient. 

Figure 4 shows the time evolution of the 5 features in transients of the 6 classes at the three power levels. Notice that signal 

variations are different at the different power levels, and more pronounced when the reactor is working at high power. 

 

 

 

 

 

 

  

  



 

Figure 4: Time evolution of the signals at different power levels in case of transients of classes F1 – F6. 

To test the incremental learning capability of the proposed algorithm under different operational conditions, it has been 

supposed that the datasets 50 80 108, ,S S S  become available at different time instants
50 80 108, ,t t t ; a fraction equal to 75% of the 

patterns of each dataset ( 50 80 108, ,train train trainS S S ), has been used to train the models whereas the remaining 25% has been used to test 

the classification performance (
50 80 108, ,test test testS S S ). 

4.1. Case study 1: increasing power level 

In this case study, the power level is increased firstly from 50% to 80% of the full power and then from 80% to 108%, at 

50 80 108t t t  . 

The procedure for incremental learning in a non-stationary environment is applied as follows. At 50t , an ensemble 1E  is 

constructed using the data in 50

trainS .  

Although an overall investigation of the influence of the parameters used to build the ensemble on the classification 

performance is outside the scope of the present work, some considerations on the possible choices are here given.  The two 

parameters of the ensemble  ,F T , the fraction of the total number of training patterns in 50

trainS  randomly drawn to create the 

single classifier training set and the number of ensemble classifiers have been fixed following a trial and error procedure. The 

results of tests performed by the authors have shown that the key issue to guarantee high performance of the ensemble is the 

diversity between the ensemble classifiers. In particular, since a low value of F leads to training sets with few common 

patterns, high performances can be obtained by reducing F , and, at the same time, increasing the number of classifiers T in 

order to properly cover all the training space. Notice, however, that since the computational efforts necessary to develop the 

diagnostic system is directly proportional to T, the choice of the parameters  ,F T
 
 results from a compromise between high 

performance (low F, high T) and reduced computational effort (high F, low T). 

The choice of the minimum classification performance, 
*p , is usually guided by requirements of the diagnostic system users. 

In this application, since the diagnostic system is devoted to the classification of faults which mainly produce efficiency 

losses if undetected, 
*p is set to 0.95. With respect to the parameter   indicating the maximum fraction of performance 

reduction which is acceptable when the diagnostic system is used to classify patterns corresponding to different operational 

conditions from those used to train the ensemble system, notice that a too low value of   will risk to cause the updating of 

the ensemble each time a new dataset becomes available with consequent high computational effort. In this respect, a value of 

  equal to 0.05 has been used. 

 



 

Table 2 reports the basic parameters used in this work to build the ensemble of classifiers. The obtained performance in the 

classification of the test patterns of 50S  is 96.67% (Table 3). 

                  Table 2: basic parameters used to build the ensembles of classifiers. 

jT   ―Number of base classifiers in the ensemble‖  10 

F  ―fraction of the total number 
jN of training patterns which constitute each bootstrapped replica of 

j

trainS ‖ 0.75 

max  ―Number of iterations of the supervised algorithm used to train the single base classifiers of the ensemble‖ 500 

 

At 
80t , the dataset 80S  becomes available and the performance of the previously developed ensemble 1E  is tested with the 

patterns of 80

testS : the fraction of patterns of 80

testS  correctly classified is satisfactory (Table 3, first row, fifth column), so that it 

is not necessary to add classifiers to the ensemble structure i.e. 2 1E E . The same occurs at 
108t when the dataset 108S

becomes available, i.e. 3 2 1E E E   (Table 3, first row, sixth column). 

Thus, in this case, it has not been necessary to update the first ensemble to learn the newly arriving information under 

different operational conditions: the ensemble constructed with data taken from transients occurring when the plant is 

working at 50% of full power is satisfactorily performing on transients at 80% and 108% of full power. 

Table 3: Performances and training computational time of the ensemble-based approaches in the classification of the test 

patterns: proposed approach for incremental learning in a non-stationary environment (first row), ensemble obtained by 

retraining all the base classifiers (second and third rows). 

Approach Train Dataset 
Training time 

(min) 

 Test Dataset  

50

testS  
80

testS  
108

testS  

Incremental Learning Ensemble -
1 2 3E E E   

50

trainS  51 0.9666 0.9606 0.9659 

Retraining -
1,2E  

50 80,train trainS S  100  0.9694  

Retraining -
1,2,3E  

50 80 108, ,train train trainS S S  150   0.9715 

The second row of Table 3 reports the classification results that would be obtained if the previously developed ensemble 1E  

were discarded at 
80t  and a new ensemble 1,2E  formed by 10T   classifiers built using all the patterns of 

50 80,train trainS S  is 

constructed: the performance of the latter ensemble is slightly better, but at the cost of high computational efforts since all the 

classifiers have to be retrained from scratch on an enlarged dataset (Table 3, third column). The training time on a Pentium 

IV 2.2 MHz PC is 51 minute and in case of retraining raises to 100 minute. A similar situation occurs at 108t if an ensemble 

1,2,3E  of 10T   classifiers is built using the patterns of 
50 80 108, ,train train trainS S S . 

4.2. Case study 2: decreasing power level 

In this case study the power level is decreased from 108% to 80% of full power and then from 80% to 50%, with datasets 
108 80 50, ,S S S  becoming available at times 108 80 50t t t  . 

The first developed ensemble 1E  formed by 
1 10T  classifiers trained at 108t using only the patterns of dataset 

108

trainS  gives a 

satisfactory performance in the classification of the patterns of 
108

testS  and 
80

testS  i.e. 2 1E E  (Table 4, first row, fourth and fifth 

column). However, when at 50t  the plant starts working at 50% of full power the performance of 1E  decreases to 71.52% of 

correctly classified patterns in 
50

testS (Table 4, first row, sixth column). In the procedure proposed in this work, at 50t , 
3 10T   

new classifiers are trained with bagging of the dataset 
50

trainS  and added to the previously constructed ensemble. The 

performance of the obtained new ensemble 3E  rises to 94.93% (Table 4, second row, sixth column). 



Furthermore, if the power plant returns to work at 80% and 108% of full power, the performance of 3E  remains still 

satisfactory (Table 4, second row, fourth and fifth columns), this shows that the ensemble 3E  has incrementally learned the 

new information in 50S without forgetting what it has learned before ( 80S and 108S ). 

The performance of 3E  is compared with those of the ensembles 1,2E  and 1,2,3E  that would be obtained by discarding the 

previously constructed ensembles at 
80t  and 

50t  and retraining new ensembles of classifiers with all data in 108 80,train trainS S  and 

108 80 50, ,train train trainS S S , respectively. Again, retraining leads to slightly improved performances, but at high computational costs 

(Table 4, third column). 

Table 4: Performances and training computational time of the ensemble-based approaches in the classification of the test 

patterns: proposed approach for incremental learning in a non-stationary environment (first and second row), ensemble 

obtained by retraining all the base classifiers (third and fourth rows). 

Approach Train Dataset 
Training time 

(min) 

 Test Dataset  

108

testS  
80

testS  
50

testS  

Incremental Learning Ensemble -
1 2E E  

108

trainS  51 0.9638 0.9576 0.7152 

Incremental Learning Ensemble -
3E  

108 50

train trainS S  51 0.9645 0.9652 0.9493 

Retraining -
1,2E  

108 80,train trainS S  100  0.9653  

Retraining -
1,2,3E  

108 80 50, ,train train trainS S S  150  0.9722 0.9611 

 

4.3. Discussion 

The above results show that the structure of the proposed ensemble is influenced by the order in which the datasets become 

available. In case study 1, the first ensemble of classifiers built on the information in 50

trainS  is able to classify the upcoming 

datasets with good accuracy, whereas in case study 2, the first ensemble of classifiers built using the information in 108

trainS  

needs to be updated when the plant starts working at 50% of full power. 

5. Conclusions 

In this work, a realistic situation in which transient examples of plant behavior in different operational conditions become 

available in successive datasets has been considered. A practical procedure has been proposed based on the addition of 

classifiers to an ensemble, for incrementally learning new situations while keeping the computational efforts under control.  

The approach used to construct the ensemble is bagging; the base classifier is a supervised Fuzzy C Means (FCM) classifier; 

the individual base classifiers outcomes are combined using a majority-voting scheme.  

The novelty of the procedure is that it allows learning the new information contained in the data becoming available during 

the plant life without forgetting the previously acquired knowledge. This incremental learning capability is obtained by 

adding new classifiers to the ensemble if the transients occurring in the new operational conditions are not satisfactorily 

classified by the current ensemble model. 

The procedure has been applied to the identification of simulated transients in the feedwater system of a Boiling Water 

Reactor (BWR) at different power levels. The proposed classification scheme has been compared with the classical approach 

which requires that the existing classification model is discarded when new data become available and a new one is retrained 

from scratch using all data that have been accumulated thus far. The obtained results show that the performance of the 

proposed procedure is comparable to that achieved by complete retraining of the models, but with the advantage of 

significant savings in computational efforts. Furthermore, the proposed procedure is suitable to be used in cases in which the 

datasets previously used for model training are lost, corrupted or otherwise unavailable. 

One limitation of the proposed approach which will be object of future work is that the proposed diagnostic system cannot be 

used for the classification of new classes of faults for which transient examples are not available in the first dataset. 
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Appendix A: Algorithms for the ensemble of classifiers 

Let S be a training dataset formed by N  patterns 
kx  whose known physical classes are , 1,...,true

k k N . The subscript true  

indicates that true

k  represent the true, a priori known physical class of kx


. The total number of classes of the N patterns kx


 

is c and thus true

k  assumes a value in  1, ,c . 

Bagging and training: 

Figure 1 shows the bagging algorithm used to train an ensemble E  formed by T  classifiers. A weak learning algorithm 

―WeakLearn” is used to train the individual base classifiers 
ih  of the ensemble. The maximum number of iterations of the 

supervised algorithm used to train the single base classifiers of the ensemble is determined by rule of thumb. The flowchart 

of the training algorithm is shown in the Figure 5.   

 

Figure 5. Flowchart for ensemble bagging and training 

Majority voting aggregation: 

Majority voting is one of the simplest and most intuitive methods to combine classification decisions. The majority voting 

method consists in assigning to x  the class label which is supported by the majority of individual classifiers. Let i  be the 

class assigned by classifier ih  of the ensemble to an unlabeled test pattern x  and 
i

V be the vote given to the different classes. 

In this algorithm, the class that receives the largest total vote is assigned as final decision; in case the number of votes to 

different classes is equal, the final class is assigned randomly among these classes with largest total vote. The flowchart 

diagram of the majority voting algorithm is shown in Figure 6. 



 

Figure 6. Flowchart of the majority voting algorithm 
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