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Abstract 
The computation of the reliability of a thermal-hydraulic (T-H) passive system of a nuclear power 

plant can be obtained by i) Monte Carlo (MC) sampling the uncertainties of the system model and 

parameters, ii) computing, for each sample, the system response by a mechanistic T-H code and iii) 

comparing the system response with pre-established safety thresholds, which define the success or 

failure of the safety function. The computational effort involved can be prohibitive because of the 

large number of (typically long) T-H code simulations that must be performed (one for each 

sample) for the statistical estimation of the probability of success or failure. 

The objective of this work is to provide operative guidelines to effectively handle the computation of 

the reliability of a nuclear passive system. Two directions of computation efficiency are considered: 

from one side, efficient Monte Carlo Simulation (MCS) techniques are indicated as a means to 

performing robust estimations with a limited number of samples: in particular, the Subset 

Simulation (SS) and Line Sampling (LS) methods are identified as most valuable; from the other 

side, fast-running, surrogate regression models (also called response surfaces or meta-models) are 

indicated as a valid replacement of the long-running T-H model codes: in particular, the use of 

bootstrapped Artificial Neural Networks (ANNs) is shown to have interesting potentials, including 

for uncertainty propagation. 

The recommendations drawn are supported by the results obtained in an illustrative application of 

literature. 

 

Keywords: Nuclear passive system, functional failure analysis, computational cost, efficient Monte 

Carlo Simulation, fast-running regression model. 
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1 Introduction 

Nuclear safety has expanded its considerations to severe accidents and increased its requirements 

for guaranteeing effective safety functions. This explains the interest in passive systems [Ahn et al., 

2010; Kim et al., 2010], which all innovative reactor concepts make use of, to a large extent in 

combination with active systems [Mackay et al., 2008; Mathews et al., 2008 and 2009]. 

According to the International Atomic Energy Agency (IAEA) definitions, a passive component 

does not need external input (especially energy) to operate [IAEA, 1991]. Then, the term “passive” 

identifies a system which is composed entirely of passive components and structures, or a system, 

which uses active components in a very limited way to initiate subsequent passive operation. The 

currently accepted categorization of passive systems, developed by the IAEA, is summarized in 

Table 1 [IAEA, 1991]. 

 

Passive systems are expected to contribute significantly to nuclear safety by combining peculiar 

characteristics of simplicity, reduction of human interaction and reduction or avoidance of external 

electrical power and signals input [Nayak et al., 2008a and b; Nayak et al., 2009]. On the other 

hand, the assessment of the effectiveness of passive systems must include considerations on their 

reliability; these have to be drawn in the face of lack of data on some underlying phenomena, scarce 

or null operating experience of these systems over the wide range of conditions encountered during 

operation and less guaranteed performance as compared to active safety systems [Pagani et al., 

2005; Burgazzi, 2007a]. 

 

Indeed, although passive systems are credited a higher reliability with respect to active ones, 

because of the reduced unavailability due to hardware failure and human error, the uncertainties 

involved in the actual operation of passive systems in the field and their modeling are usually larger 

than in active systems. Two different sources of uncertainties are usually considered in passive 

system analysis: randomness due to intrinsic variability in the behavior of the system (aleatory 

uncertainty) and imprecision due to lack of data on some underlying phenomena (e.g., natural 

circulation) and to scarce or null operating experience over the wide range of conditions 

encountered during operation [Apostolakis, 1990; Helton and Oberkampf, 2004]. 

As a consequence of these uncertainties, in practice there is a nonzero probability that the physical 

phenomena involved in the passive system operation lead to failure of performing the intended 

safety function even if i) safety margins are present and ii) no hardware failures occur. In fact, 

deviations in the natural forces and in the conditions of the underlying physical principles from the 

expected ones can impair the function of the system itself: this event is referred to in the literature 
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as functional failure [Burgazzi, 2003]. The quantification of the probability of this occurrence is an 

issue of concern both for the “nominal” passive systems (e.g., the ESBWR operating in nominal 

conditions) [Juhn et al., 2000; Rohde et al. 2008] and the “emergency” passive systems (e.g., 

accumulators, isolation condensers, etc.) [Chung et al., 2008]. In the following, the discussion will 

focus on the latter type of systems. 

 

The occurrence of functional failures is especially critical in type B passive systems, i.e., those 

involving moving working fluids and referred to as Thermal-Hydraulic (T-H) passive systems 

(Table 1). The reason lies behind the small driving forces engaging passive operation and the 

complex and delicate T-H phenomena determining the system performance. For performing their 

accident prevention and/or mitigation functions, these passive systems rely exclusively on natural 

forces, e.g. gravity or natural convection, not generated by external power sources. Because the 

magnitude of the natural forces which drive operation is relatively small, counter-forces (e.g., 

friction) cannot be ignored because of comparable magnitude. This leads to uncertainty in the actual 

T-H system performance which must be evaluated by a specific, systematic and rigorous 

methodology1. 

 

In recent years, several methodologies have been proposed in the literature to quantify the 

probability that nuclear passive systems fail to perform their functions [Burgazzi, 2007b; Zio and 

Pedroni, 2009a]. A number of methods adopt the system reliability analysis framework. In [Aybar 

et al., 1999], a dynamic methodology based on the cell-to-cell mapping technique has been used for 

the reliability analysis of an inherently safe Boiling Water Reactor (BWR). In [Burgazzi, 2007a], 

the failure probability is evaluated as the probability of occurrence of different independent failure 

modes, a priori identified as leading to the violation of the boundary conditions and/or physical 

mechanisms needed for successful passive system operation. In [Burgazzi, 2002], modeling of the 

passive system is simplified in terms of the modeling of the unreliabilities of the hardware 

components of the system: this is done by identifying the hardware components failures that 

degrade the natural mechanisms which the passive system relies upon and associating the 

corresponding components unreliabilities. This concept is also at the basis of the Assessment of 

Passive System ReliAbility (APSRA) approach which has been applied to the reliability analysis of 

the natural circulation-based Main Heat Transport (MHT) system of an Indian Heavy Water 

Reactor (HWR) [Nayak et al., 2008a and b; Nayak et al., 2009]. 

                                                 
1 Notice that in the following, the discussion will focus on Type B passive systems, i.e., those involving moving 
working fluids and referred to as T-H passive systems; thus, the locution “passive system” will implicitly mean “T-H 
passive system” in the remainder of the paper. 
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An alternative approach is founded on the introduction of the concept of functional failures, within 

the reliability physics framework of load-capacity exceedance [Burgazzi, 2003, 2007a and c, 2008 

and 2009]: a passive system fails to perform its function due to deviations from its expected 

behavior which lead the load imposed on the system to overcome its capacity. In [Woo and Lee, 

2009a, b and 2010; Han and Yang, 2010], this concept is at the basis of the estimation of the 

functional failure probability of passive decay heat removal systems of Very High Temperature 

Reactors (VHTRs). It also provides the basis for the methodologies known as Reliability Evaluation 

of PAssive Safety (REPAS) systems [D’ Auria et al., 2002; Jafari et al., 2003; Zio et al., 2003] and 

Reliability Methods for Passive Safety (RMPS) functions [Marquès et al., 2005], developed and 

employed for the analysis of passive Residual Heat Removal Systems (RHRSs) of Light Water 

Reactors (LWRs). It has also been used to evaluate the failure probabilities of decay heat removal 

systems in Gas-cooled Fast Reactors (GFRs) [Pagani et al., 2005; Bassi and Marquès, 2008; 

Mackay et al., 2008; Patalano et al., 2008; Zio and Pedroni, 2009b, c and 2010; Pedroni et al., 2010; 

Zio et al., 2010], sodium-cooled Fast Breeder Reactors (FBRs) [Mathews et al., 2008 and 2009; 

Arul et al., 2009 and 2010] and the lead-cooled, fast spectrum Flexible Conversion Ratio Reactor 

(FCRR) [Fong et al., 2009]. In all these analyses, the passive system is modeled by a detailed, 

mechanistic T-H system code and the probability of not performing the required function is 

estimated based on a Monte Carlo (MC) sample of code runs which propagate the epistemic (state-

of-knowledge) uncertainties in the model describing the system and the numerical values of its 

parameters. Because of the existence of these uncertainties, it is possible that even if no hardware 

failure occurs, the system may not be able to accomplish its mission2. 

 

The functional failure-based approach provides in principle the most realistic assessment of the T-H 

passive system, thanks to the flexibility of Monte Carlo simulation which does not suffer from any 

T-H model complexity and, therefore, does not force to resort to simplifying approximations: for 

this reason, the functional failure-based approach will be taken here as reference. On the other hand, 

such approach requires considerable and often prohibitive computational efforts. The reason is 

twofold. First, a large number of Monte Carlo-sampled T-H model evaluations must generally be 

carried out for an accurate uncertainty propagation and functional failure probability estimation. 

                                                 
2 It is worth mentioning also the work performed by Lee and co-workers who took up the problem of passive system 
functional reliability assessment focusing on the idea of identifying the limit state function of the system (essentially 
referring to the generic structural reliability paradigm of load-capacity exceedance described above) as a prelude to the 
quantification of the functional reliability itself [Aumeier, 1994; Aumeier and Lee, 1993 and 1994; Aumeier et al., 1995 
and 2006; Lee et al., 1993-1995]. However, since the focus of the present paper is on the efficient computation of the 
passive system functional reliability (given the limit state function of the system and proper input probability 
distributions representing the uncertainties in the system model and parameters), no further details are given here for 
brevity; the interested reader is thus referred to the cited references. 
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Since the number of simulations required to obtain a given accuracy depends on the magnitude of 

the failure probability to be estimated, with the computational burden increasing with decreasing 

functional failure probability [Schueller, 2007 and 2009], this poses a significant challenge for the 

typically quite small (e.g., less than 10-4) probabilities of functional failure of T-H passive safety 

systems. Second, long calculations (several hours) are typically necessary for each run of the 

detailed, mechanistic T-H code (one code run is required for each sample of values drawn from the 

uncertainty distributions) [Fong et al., 2009; Pourgol-Mohamad et al., 2010]3. 

Finally, notice that for the same reasons a high computational burden is associated also to the 

sensitivity analysis process, i.e., the identification of the model parameters that contribute the most 

to the uncertainty in the performance of the passive system and consequently to its functional 

failure [Saltelli et al., 2008; Marrel et al., 2009]. 

Thus, efficient simulation techniques must be sought to perform robust functional failure 

probability estimation, uncertainty propagation and sensitivity analysis while reducing as much as 

possible the number of T-H code simulations and the associated computational time. 

 

The objective of the present paper is to show how the computational issues associated to the 

functional reliability assessment of nuclear passive systems can be effectively handled. Two 

conceptual directions of computation efficiency are considered: efficient Monte Carlo Simulation 

techniques for performing robust estimations based on a limited number of samples drawn (i.e., T-H 

code simulations); fast-running, surrogate regression models (also called response surfaces or meta-

models) in replacement of the long-running T-H model codes. 

Within this conceptual framework, different computational methods are recommended for 

efficiently tackling the different phases of the functional reliability assessment of nuclear passive 

systems: in particular, an optimized Line Sampling (LS) method [Zio and Pedroni, 2010] is 

recommended for functional failure probability estimation, whereas the use of Subset Simulation 

(SS) [Au and Beck, 2001; Au and Beck, 2003b] and bootstrapped Artificial Neural Networks 

(ANNs) [Efron and Thibshirani, 1993; Zio, 2006] is suggested for uncertainty propagation and 

sensitivity analysis. 

These recommendations are arrived at on the basis of i) a critical review of the methods available in 

the literature on the subject and ii) the experience of the authors in nuclear passive systems 

functional reliability assessments [Zio and Pedroni, 2009a-c and 2010; Pedroni et al., 2010; Zio et 

al., 2010]. 

                                                 
3 For example, the computer code RELAP5-3D, which is used to describe the thermal-hydraulic behavior of nuclear 
systems, may take up to twenty hours per run in some applications. 
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The remainder of the paper is organized as follows. In Section 2, the main sources and types of 

uncertainties involved in the operation and modeling of nuclear passive systems are recalled. In 

Section 3, the reliability analysis of nuclear passive systems is framed in terms of the concept of 

functional failure. In Section 4, the two conceptual directions considered for reducing the 

computational burden associated to the reliability assessment of nuclear passive systems (i.e., 

advanced MCS and empirical regression modeling) are presented and critically analyzed on the 

basis of a literature review. In Section 5, techniques are recommended to effectively tackle the 

computational burden associated to the different phases of the reliability assessment; results of the 

application of the proposed techniques to a case study of literature are also shown. Finally, 

guidelines and recommendations are summarized in the concluding Section. 

2 Sources and types of uncertainties in the operation and modeling of 

nuclear passive systems 

Uncertainties in the operation and modelling of nuclear passive systems must be accounted for in 

their reliability evaluations within a Probabilistic Risk Assessment (PRA) framework [Burgazzi, 

2004; Pagani et al., 2005; Burgazzi, 2007a-c]. 

To effectively represent and model these uncertainties, it is useful to distinguish two kinds: 

“aleatory” and “epistemic” [Apostolakis, 1990; Helton and Oberkampf, 2004; USNRC, 2009]. The 

former refers to phenomena occurring in a random way: probabilistic modeling offers a sound and 

efficient way to describe such occurrences. The latter captures the analyst’s confidence in the PRA 

model by quantifying the degree of belief of the analysts on how well it represents the actual 

system; it is also referred to as state-of-knowledge or subjective uncertainty and can be reduced by 

gathering information and data to improve the knowledge on the system behavior. 

As might be expected, the uncertainties affecting the operation of nuclear passive systems (Table 2) 

are both of aleatory kind, because of the randomness in the occurrence of some phenomena, and of 

epistemic nature, because of the limited knowledge on some phenomena and processes and the 

paucity of the relative operational and experimental data available [Burgazzi, 2007a]. 

 

Aleatory uncertainties concern, for instance, the occurrence of an accident scenario, the time to 

failure of a component or the variation of the actual geometrical dimensions (due to differences 

between the as-built system and its design upon which the analysis is based) and material properties 

(affecting the failure modes, e.g. concerning undetected leakages and heat losses) [NUREG-1150, 

1990; Helton, 1998; USNRC, 2002; Burgazzi, 2007a-c]. Two examples of classical probabilistic 
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models used to describe this kind of uncertainties in PRAs are the Poisson model for events 

randomly occurring in time (e.g., random variations of the operating state of a valve) and the 

binomial model for events occurring “as the immediate consequence of a challenge” (e.g., failures 

on demand) [NUREG-CR-6850, 2005]. The effects of these uncertainties are then propagated onto 

the risk measure, e.g. by Monte Carlo simulation based on Importance Sampling or Stratified 

Sampling [Hofer et al., 2002; Cacuci and Ionescu-Bujor, 2004; Krzykacz-Hausmann, 2006]. The 

contribution of aleatory uncertainty to nuclear passive systems failure is quite clear: for example, 

natural circulation could be altered by a random disturbance in the system geometry or by a random 

variation of the operating state of a component [Pagani et al., 2005]. 

In the present paper, the representation and propagation of aleatory uncertainties are not considered, 

the focus being on epistemic uncertainty [Pagani et al., 2005; Bassi and Marques, 2008; Mackay et 

al., 2008; Mathews et al., 2008; Patalano et al., 2008; Arul et al., 2009 and 2010]. 

 

Epistemic uncertainty is associated to the lack of knowledge about the properties and conditions of 

the phenomena (i.e., natural circulation) underlying the behavior of the passive systems. This 

uncertainty manifests itself in the model representation of the system behavior, in terms of both 

(model) uncertainty in the hypotheses assumed and (parameter) uncertainty in the values of the 

parameters of the model [Cacuci and Ionescu-Bujor, 2004; Helton et al., 2006; Patalano et al., 

2008]. 

Model uncertainty arises because mathematical models are simplified representations of real 

systems and, therefore, their results may be affected by error or bias. Model uncertainty also 

includes the fact that the model could be too simplified and therefore would neglect some important 

phenomena affecting the final result. This latter type of uncertainty is sometimes identified 

independently from model uncertainty and is known as completeness uncertainty [USNRC, 2009]. 

Model uncertainty may for example involve the correlations adopted to describe the T-H 

phenomena, which are subject to errors of approximation. Such uncertainties may for example be 

captured by a multiplicative model [Zio and Apostolakis, 1996; Patalano et al., 2008]: 

,)( ε⋅= xcz  (1) 

where z is the real value of the quantity to be predicted (e.g. heat transfer coefficients, friction 

factors, Nusselt numbers or thermal conductivity coefficients), c(·) is the mathematical model of the 

correlation (i.e., the result of the correlation as computed by the T-H code), x is the vector of 

correlating variables and ε is the associated multiplicative error factor: as a result, the uncertainty in 

the quantity z to be predicted is translated into an uncertainty in the multiplicative error factor ε. 

This error is commonly classified as representing model uncertainty. 
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Furthermore, uncertainty affects the values of the parameters used to describe the system (e.g., 

power level, pressure, cooler wall temperature, material conductivity, …), e.g. owing to errors in 

their measurement or insufficient data and information. For example, according to industry practice 

and experience, an error of 2% is usually considered in the determination of the power level in a 

reactor, due to uncertainties in the measurements. As a consequence, the power level is usually 

known only to a certain level of precision, i.e., epistemic uncertainty is associated with it. 

Both model and parameter uncertainties associated to the current state of knowledge of the system 

can be represented by subjective probability distributions within a Bayesian approach to PRA 

[Apostolakis, 1990, 1995 and 1999]. In current PRAs, the effect of these uncertainties is often 

propagated on the risk measure by Latin Hypercube Sampling (LHS) [Helton and Davis, 2003]. 

 

Epistemic uncertainties affect also the identification of the failure criterion to be adopted for the 

system under analysis: for instance, reactor parameters (e.g., the maximal cladding temperature) as 

well as passive system variables (e.g., the thermal power exchanged in a cooler) could be equally 

adopted as indicators of the safety performance of the passive system; furthermore, the failure 

thresholds may be established as point-targets (e.g., a specific quantity of liquid must be delivered 

within a fixed time) or time-varying targets or even integral targets over a defined mission time 

(e.g., the system must reject at least a given value of thermal power during the entire system 

intervention) [Jafari et al., 2003; Marques et al., 2005]. 

Finally, state-of-knowledge uncertainty affects the identification of the possible failure modes and 

related causes and consequences, such as leaks (e.g., from pipes and pools), deposit thickness on 

components surfaces (e.g., pipes or heat exchangers), presence of non-condensable gases, stresses, 

blockages and material defects [Burgazzi, 2007a]. The identification of all the relevant 

modes/causes of failure in terms of critical parameters for the passive system performance/stability 

and the assessment of the relative uncertainty may be attempted by commonly used hazard 

identification procedures, like HAZard and OPerability (HAZOP) analysis and Failure Mode and 

Effect Analysis (FMEA) [Burgazzi, 2004 and 2006]. 

The contribution of epistemic uncertainties to the definition of the reliability/failure probability of 

nuclear passive systems can be qualitatively explained as follows. If the analyst is not fully 

confident on the validity of the correlations adopted to estimate, e.g., the design value of the heat 

transfer coefficient in the core during natural convection (e.g., due to the paucity of experimental 

data available in support of the use of a particular correlation), he/she admits that in a real accident 

scenario the actual value of the heat transfer coefficient in the core might deviate from the 

nominal/design one (i.e., different from the value computed by a deterministic correlation). If this 
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variation (accepted as plausible by the analyst) were to take place during an accident scenario, it 

may cause the passive system to fail performing its safety function; based on the current state of 

knowledge of the heat transfer phenomenon in the core under the expected conditions, the 

likelihood of the heat transfer coefficient variation is to be quantified for estimating the 

reliability/failure probability. A future improvement in the state of knowledge, e.g. due to the 

collection of data and information useful to improve the characterization of the heat transfer 

phenomenon, would lead to a change in the epistemic uncertainty distribution describing the 

likelihood of the various values of heat transfer coefficient and eventually to a more accurate 

estimate of the system reliability/failure probability [Pagani et al., 2005; Bassi and Marques, 2008; 

Mackay et al., 2008; Mathews et al., 2008 and 2009; Patalano et al., 2008; Arul et al., 2009 and 

2010; Fong et al., 2009]. 

In the present paper, only epistemic uncertainties are considered in the estimation of the 

reliability/failure probability of nuclear passive systems [Pagani et al., 2005; Bassi and Marques, 

2008; Mackay et al., 2008; Mathews et al., 2008; Patalano et al., 2008; Arul et al., 2009 and 2010]. 

3 Functional failure analysis of nuclear passive systems 

The essential steps for the conceptual development of the functional failure analysis of nuclear 

passive systems are briefly reported below [Marquès et al., 2005]: 

1. Detailed modeling of the system response by means of a deterministic, best-estimate 

(typically long-running) T-H code. 

2. Identification of the vector x  = {x1, x2, …, xj, …, 
inx } of parameters/variables, models and 

correlations (i.e., the inputs to the T-H code) which contribute to the uncertainty in the 

vector y = {y1, y2, ..., yl, ..., 
ony } of the outputs of the best-estimate T-H calculations 

(Section 2). 

3. Propagation of the uncertainties associated to the identified relevant parameters, models and 

correlations x  (step 2. above) through the deterministic, long-running T-H code in order to 

provide a complete representation (in terms of Probability Density Functions-PDFs, 

Cumulative Distribution Functions-CDFs and so on) of the uncertainty associated to the 

vector y of the outputs (step 2. above) of the deterministic, best-estimate T-H code. 

4. Estimation of the functional failure probability of the passive system conditional on the 

current state of knowledge about the phenomena involved (step 2. above) [Pagani et al., 

2005; Bassi and Marques, 2008; Mackay et al., 2008; Mathews et al., 2008 and 2009; 

Patalano et al., 2008; Arul et al., 2009 and 2010; Fong et al., 2009; Zio and Pedroni, 2009a-c 

and 2010; Pedroni et al., 2010; Zio et al., 2010]. Formally, let Y( x ) be a single-valued scalar 
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variable indicator of the performance of the passive system (e.g., the fuel peak cladding 

temperature) and αY a threshold value defining the corresponding failure criterion (e.g., a 

limit value imposed by regulating authorities)4. For illustrating purposes, let us assume that 

the passive system operates as long as Y( x ) < αY; equivalently, introducing a variable called 

Performance Function (PF) as ( ) Yx Yg α−= xx)( , failure occurs if 0)( >xxg . The 

probability P(F) of system functional failure can then be expressed by the multidimensional 

integral: 

( ) ( )∫∫ ∫= xxx dqIFP F )(...  (2) 

where ( )⋅q  is the joint Probability Density Function (PDF) representing the uncertainty in 

the parameters x , F is the failure region (where gx(·) > 0) and IF(·) is an indicator function 

such that IF(x) = 1, if x ∈ F and IF(x) = 0, otherwise. The MCS procedure for estimating the 

functional failure probability entails that a large number NT of samples of the values of the 

system parameters x be drawn from the corresponding probability distributions and used to 

evaluate Y(x) by running the T-H code. An estimate ( ) TNFP̂  of the probability of failure 

P(F) can then be computed by dividing the number of times that Y( x ) > αY by the total 

number of samples NT. 

5. Perform a sensitivity study to determine the contribution of the individual uncertain 

parameters (i.e., the inputs to the T-H code) {xj: j = 1, 2, …, ni} to the uncertainty in the 

outputs of the T-H code {yl: l = 1, 2, …, no} (and in the performance function Y(x) of the 

passive system) and consequently to the functional failure probability of the T-H passive 

system. As is true for uncertainty propagation (step 4. above), sensitivity analysis relies on 

multiple (e.g., many thousands) evaluations of the code for different combinations of system 

inputs. 

 

In this work, we propose to tackle the computational burden posed by the uncertainty propagation, 

failure probability estimation and sensitivity analysis of steps 3. – 5. above in two effective ways 

(Section 4): from one side, efficient Monte Carlo Simulation techniques can be employed to 

perform robust estimations with a limited number of input samples (Section 4.1); from the other 

side, fast-running, surrogate regression models (also called response surfaces or meta-models) can 

be used to replace the long-running T-H model code (Section 4.2). 

                                                 
4 Note that the choice of a single-valued performance function does not reduce the generality of the approach, because 
any multidimensional vector of physical quantities (i.e., the vector y of the outputs of the T-H code in this case) can be 
conveniently re-expressed as a scalar parameter by resorting to suitable min-max transformations: see [Au and Beck, 
2001 and 2003b; Zio and Pedroni, 2009b, c and 2010] for details. 
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4 Handling the computational issues associated to the functional 

reliability assessment of nuclear passive systems 

In this Section, the two approaches considered for dealing with the computational issue associated 

to the functional reliability assessment of nuclear passive systems are summarized: in Section 4.1, 

various Monte Carlo Simulation techniques are synthetically described; in Section 4.2, empirical 

regression modeling is presented as a means to build fast-running, surrogate models for replacing 

the long-running T-H model codes. Both approaches are critically reviewed on the basis of the 

available literature. 

4.1 Advanced Monte Carlo Simulation methods 

As previously stated, the computational issues described in the previous Section 3 can be tackled 

from one side by resorting to efficient simulation techniques that perform robust estimations with a 

limited number of input samples, thus with an associated low computational time. 

One such technique is the Importance Sampling (IS) method [Kalos and Whitlock, 1986; Au and 

Beck, 2003a; Au, 2004; Schueller et al., 2004]. This technique amounts to replacing the original 

Probability Density Function (PDF) of the uncertain variables with an Importance Sampling 

Distribution (ISD) chosen so as to generate samples that lead to failure more frequently [Au and 

Beck, 2003a]. IS has the capability of considerably reducing the variance of the estimates compared 

with standard Monte Carlo Simulation (MCS), provided that the ISD is chosen similar to the 

theoretical optimal one. In practice, substantial insights on the system behaviour and extensive 

modelling work may be required to identify a “good” ISD, e.g. by setting up complex kernel density 

estimators [Au and Beck, 2003a], by identifying the design point of the problem [Au, 2004] or 

simply by tuning the parameters of the ISD based on expert judgment and trial-and-error [Pagani et 

al., 2005]. Overall, this increases the effort associated to the simulation; furthermore, there is 

always the risk that an inappropriate choice of the ISD may lead to worse estimates compared to 

Standard MCS [Schueller et al., 2004]. 

Another technique is Stratified Sampling. This technique requires dividing the sample space into 

several non-overlapping subregions (referred to as “strata”) and calculating the probability of each 

subregion; the (stratified) sample is then obtained by randomly sampling a predefined number of 

outcomes from each stratum [Helton and Davis, 2003; Cacuci and Ionescu-Bujor, 2004]. By so 

doing, the full coverage of the sample space is ensured while maintaining the probabilistic character 

of random sampling. A major issue related to the implementation of Stratified Sampling lies in 

defining the strata and calculating the associated probabilities, which may require considerable a 

priori knowledge. As a remark, notice that the widely used event tree techniques in nuclear reactor 
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Probabilistic Risk Assessment (PRA) can be seen as defining and implementing Stratified Sampling 

of accident events and scenarios [Cacuci and Ionescu-Bujor, 2004]. 

 

A popular compromise between plain random sampling (i.e., standard MCS) and 

Importance/Stratified Sampling is offered by Latin Hypercube Sampling (LHS), which is 

commonly used in PRA [Morris, 2000] for efficiently generating random samples [MacKay et al., 

1979; Helton and Davis, 2003; Helton et al., 2005; Sallaberry et al., 2008]. The effectiveness of 

LHS, and hence its popularity, derives from the fact that it provides a dense stratification over the 

range of each uncertain variable, with a relatively small sample size, while preserving the desirable 

probabilistic features of simple random sampling; moreover, there is no necessity to determine 

strata and strata probabilities like in Stratified Sampling [Helton and Davis, 2003]. For these 

reasons LHS is frequently adopted for efficiently propagating epistemic uncertainties in PRA 

problems [NUREG-1150, 1990; Helton, 1998; Hofer et al., 2002; Krzykacz-Hausmann, 2006; 

Helton and Sallaberry, 2009]. 

On the other hand, LHS is very efficient for estimating mean values and standard deviations in 

complex reliability problems [Olsson et al., 2003], but only slightly more efficient than standard 

MCS for estimating small failure probabilities [Pebesma and Heuvelink, 1999], like those expected 

for passive safety systems. 

 

Recently, Subset Simulation (SS) [Au and Beck, 2001; Au and Beck, 2003b] and Line Sampling 

(LS) [Koutsourelakis et al., 2004; Pradlwarter et al., 2005] have been proposed as advanced Monte 

Carlo Simulation methods for efficiently tackling the multidimensional problems of structural 

reliability. These methods have proved efficient also in the estimation of the functional failure 

probability of T-H passive systems [Zio and Pedroni, 2009b, c and 2010]. Indeed, structural 

reliability problems are also formulated within a functional failure framework of analysis, in which 

the systems fail whenever the load applied (i.e., the stress) exceeds their capacity (i.e., the 

resistance) [Schueller and Pradlwarter, 2007]. This makes the two methods suitable for application 

to the functional reliability analysis of nuclear passive systems, where the failure is specified in 

terms of one or more safety variables (e.g., temperatures, pressures, flow rates, ...) crossing the 

safety thresholds specified by the regulating authorities [Bassi and Marques, 2008; Mackay et al., 

2008; Mathews et al., 2008; Patalano et al., 2008]. 

More specifically, in the SS approach, the functional failure probability is expressed as a product of 

conditional probabilities of some chosen intermediate and thus more frequent events. The problem 

of evaluating the small probabilities of functional failures is thus tackled by performing a sequence 
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of simulations of more frequent events in their conditional probability spaces; the necessary 

conditional samples are generated through successive Markov Chain Monte Carlo (MCMC) 

simulations [Metropolis et al., 1953], in a way to gradually populate the intermediate conditional 

regions until the final functional failure region is reached. 

In the LS method, lines, instead of random points, are used to probe the failure domain of the high-

dimensional problem under analysis [Pradlwarter et al., 2005]. An “important direction” is 

optimally determined to point towards the failure domain of interest and a number of conditional, 

one-dimensional problems are solved along such direction, in place of the high-dimensional 

problem [Pradlwarter et al., 2005]. The approach has been shown to perform better than standard 

MCS in a wide range of reliability applications [Koutsourelakis et al., 2004; Schueller et al., 2004; 

Pradlwarter et al., 2005 and 2007; Schueller and Pradlwarter, 2007; Lu et al., 2008; Valdebenito et 

al., 2010; Zio and Pedroni, 2009c and 2010]. Furthermore, if the boundaries of the failure domain of 

interest are not too rough (i.e., almost linear) and the “important direction” is almost perpendicular 

to them, the variance of the failure probability estimator could be ideally reduced to zero 

[Koutsourelakis et al., 2004]5. 

In the present paper, particular focus is devoted to SS and LS: for this reason, synthetic descriptions 

of these techniques and an illustrative application to the functional failure analysis of a T-H passive 

system are reported in Section 5. 

4.2 Empirical regression modeling 

Another way to tackle the computational issues associated to the reliability analysis of nuclear 

passive systems is that of resorting to fast-running, surrogate regression models, also called 

response surfaces or meta-models, to approximate the input/output function implemented in the 

long-running system model code, and then substitute it in the passive system reliability analysis 

[Storlie et al., 2008]. 

The construction of such regression models entails running the system model code a predetermined, 

reduced number of times (e.g., 50-100) for specified values of the uncertain input variables and 

collecting the corresponding values of the output of interest; then, statistical techniques are 

employed for calibrating/adapting the internal parameters/coefficients of the response surface of the 

regression model in order to fit the input/output data generated in the previous step. 

                                                 
5 Apart from efficient MC techniques, there exist methods based on nonparametric order statistics [Wilks, 1942] that 
propagate uncertainties through mechanistic T-H codes with reduced computational burden, especially if only one- or 
two-sided confidence intervals are needed for particular statistics (e.g., the 95th percentile) of the outputs of the code. 
For example, the so-called coverage [Guba et al., 2003; Makai and Pal, 2006] and bracketing [Nutt and Wallis, 2004] 
approaches can be used to identify the number of sample code runs required to obtain a given confidence level on the 
estimates of prescribed statistics of the code outputs. 
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Putting it in a formal framework, let us consider a generic meta-model to be built for performing the 

task of nonlinear regression, i.e., estimating the nonlinear relationship between a vector of input 

variables x = {x1, x2, ..., xj, ..., 
inx } and a vector of output targets y = {y1, y2, ..., yl, ..., 

ony }, on the 

basis of a finite (and possibly small) set of input/output data examples (i.e., patterns), 

( ){ }trainpptrain NpD ...,,2,1,, == yx  [Zio, 2006]. It can be assumed that the target vector y is related to 

the input vector x by an unknown nonlinear deterministic function ( )xµy  corrupted by a noise 

vector ( )xε , i.e., 

( ) ( ) ( )xεxµxy y += . (3) 

As introduced in Section 3, in the present case of T-H passive system functional failure probability 

assessment the vector x contains the relevant uncertain system parameters/variables, the nonlinear 

deterministic function ( )xµy  represents the complex, long-running T-H mechanistic model code 

(e.g., RELAP5-3D), the vector y(x) contains the output variables of interest for the analysis and the 

noise ( )xε  represents the errors introduced by the numerical methods employed to calculate ( )xµy  

[Storlie et al., 2009]; for simplicity, in the following we assume ( )xε  = 0 [Secchi et al., 2008]. 

Thus, the objective of the regression task is to estimate ( )xµy  in (3) by means of a regression 

function f(x, w*) depending on a set of parameters w* to be properly determined on the basis of the 

available data set Dtrain. The algorithm used to calibrate the set of parameters w* is obviously 

dependent on the nature of the regression model adopted, but in general it aims at minimizing the 

mean (absolute or quadratic) error between the output targets of the original T-H code, yp = ( )pxµy , 

p = 1, 2, ..., Ntrain, and the output vectors of the regression model, ( )*,ˆ wxfy pp = , p = 1, 2, ..., Ntrain; 

for example, the Root Mean Squared Error (RMSE) is commonly adopted to this purpose [Zio, 

2006]. 

Several examples can be found in the open literature concerning the application of surrogate meta-

models in reliability problems. In [Bucher and Most, 2008; Gavin and Yau, 2008; Liel et al., 2009], 

polynomial Response Surfaces (RSs) are employed to evaluate the failure probability of structural 

systems; in [Arul et al., 2009 and 2010; Fong et al., 2009; Mathews et al., 2009], linear and 

quadratic polynomial RSs are employed for performing the reliability analysis of T-H passive 

systems in advanced nuclear reactors; in [Deng, 2006; Hurtado, 2007; Cardoso et al., 2008; Cheng 

et al., 2008], learning statistical models such as Artificial Neural Networks (ANNs), Radial Basis 

Functions (RBFs) and Support Vector Machines (SVMs) are trained to provide local 

approximations of the failure domain in structural reliability problems; in [Volkova et al., 2008; 
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Marrel et al., 2009], Gaussian meta-models are built to calculate global sensitivity indices for a 

complex hydrogeological model simulating radionuclide transport in groundwater. 

 

However, when using the approximation of the system output provided by an empirical regression 

model, an additional source of model uncertainty is introduced which needs to be evaluated, 

particularly in safety critical applications like those related to nuclear power plant technology. In 

this paper we propose to resort to bootstrapped regression models [Efron and Thibshirani, 1993], 

i.e., ensembles of regression models, constructed on different data sets bootstrapped from the 

original one [Zio, 2006; Storlie et al., 2009]. In fact, the ensemble framework of regression 

modeling allows quantifying the model uncertainty associated to the estimates provided by the 

regression models in terms of confidence intervals. 

The bootstrap method is a distribution-free inference method which requires no prior knowledge 

about the distribution function of the underlying population [Efron and Thibshirani, 1993]. The 

basic idea is to generate samples from the observed data by sampling with replacement from the 

original data set [Efron and Thibshirani, 1993]: each of these bootstrapped data sets is used to build 

a bootstrapped regression model which is used to calculate the reliability quantity of interest (e.g., 

the passive system failure probability in this case). From the theory and practice of ensembles of 

empirical models, it can be shown that the estimates given by bootstrapped regression models is in 

general more accurate than the estimate of the best regression model in the bootstrap ensemble of 

regression models [Zio, 2006; Cadini et al., 2008]. 

Some examples of the application of the bootstrap method for the evaluation of the uncertainties 

associated to the output of regression models in safety-related problems can be found in the 

literature: in [Zio, 2006], bootstrapped ANNs are trained to predict nuclear transients processes; in 

[Cadini et al., 2008; Secchi et al., 2008], the model uncertainty, quantified in terms of a standard 

deviation, is used to “correct” the ANN output in order to provide conservative estimates for 

important safety parameters in nuclear reactors (i.e., percentiles of the pellet cladding temperature); 

finally, in [Storlie et al., 2009], the bootstrap procedure is combined with different regression 

techniques, e.g. Multivariate Adaptive Regression Spline (MARS), Random Forest (RF) and 

Gradient Boosting Regression (GBR), to calculate confidence intervals for global sensitivity indices 

of the computationally demanding model of a nuclear waste repository. 

In the present paper, particular emphasis is given to bootstrapped ANN regression models: for this 

reason, a synthetic description of this technique and an illustrative application to the functional 

failure analysis of a T-H passive system is reported in Section 5. 
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5 Recommendations for reducing the computational burden 

associated to the functional reliability analysis of nuclear passive 

systems 

In this Section i) the different phases of the functional reliability analysis of nuclear passive systems 

are considered: in particular, the estimation of the functional failure probability (Section 5.1), the 

uncertainty propagation (Section 5.2) and sensitivity analysis (Section 5.3) phases; ii) on the basis 

of the literature review and the considerations made in the previous Section 4, techniques are 

recommended to efficiently tackle the computational burden associated to each of these analyses; 

iii) guidelines on the recommended techniques are provided, with illustrative applications to the 

functional reliability analysis of a nuclear passive system of literature [Pagani et al., 2005]. 

5.1 Functional failure probability estimation 

If the analyst is only interested in an accurate and precise estimation of the (typically small) 

functional failure probability of the T-H passive system (modelled by a long-running, nonlinear and 

non-monotonous T-H code), then the use of the Line Sampling technique is strongly suggested. 

In extreme synthesis, the computational steps of the algorithm are [Pradlwarter et al., 2005 and 

2007]: 

1. From the original multidimensional joint probability density function ( ) ),0[: ∞→ℜ⋅ nq , 

sample NT vectors { }T
k Nk ...,,2,1: =x , with { }k

n
k
j

kkk xxxx ...,,...,,, 21=x . 

2. Transform the NT sample vectors { }T
k Nk ...,,2,1: =x  defined in the original (i.e., physical) 

space into NT samples { }T
k Nk ...,,2,1: =θ  defined in the so-called “standard normal space”, 

where each random variable is represented by an independent central unit Gaussian 

distribution; also the PFs ( )⋅xg  defined in the physical space have to be transformed into 

( )⋅θg  in the standard normal space [Huang and Du, 2006]. 

3. In the standard normal space, determine a unit vector { }nj αααα ...,,...,,, 21=α T (hereafter 

also called “important unit vector” or “important direction”) pointing towards the failure 

domain F of interest. 

4. Reduce the problem of computing the high-dimensional failure probability integral (2) to a 

number of conditional one-dimensional problems, solved along the “important direction” α 

in the standard normal space: in particular, estimate NT conditional “one-dimensional” 

failure probabilities ( ){ }T
k NkFP ...,,2,1:ˆ ,1 =D , corresponding to each one of the standard 
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normal samples { }T
k Nk ...,,2,1: =θ  obtained in step 2. Notice that 2·NT or 3·NT system 

performance analyses (i.e., runs of the T-H model code) have to be carried out to calculate 

each of the NT conditional one-dimensional failure probability estimates 

( ){ }T
k NkFP ...,,2,1:ˆ ,1 =D  (see Pradlwarter et al., 2005 and 2007 for details). 

5. Compute the unbiased estimator ( ) TNFP̂  for the failure probability ( )FP  and its variance 

( )[ ]TNFP̂2σ  as: 

( ) ( )∑
=

⋅=
T

T

N

k

k
T

N FPNFP
1

,1ˆ1ˆ D , (4) 

( )[ ]TNFP̂2σ  = ( ) ( ) ( )( )∑
=

−⋅−
T

T

N

k

NkD
TT FPFPNN

1

2,1 ˆˆ11 . (5) 

The LS method here outlined can significantly reduce the variance (5) of the estimator (4) of the 

failure probability integral (2) [Koutsourelakis et al., 2004]; however, its efficiency depends on the 

determination of the important direction α (step 3. above). 

 

With respect to this issue, four methods have been proposed in the open literature to estimate the 

important direction α for LS. In [Koutsourelakis et al., 2004], the important unit vector α is 

computed as the normalized “center of mass” of the failure domain F of interest; in [Koutsourelakis 

et al., 2004; Valdebenito et al., 2010], the important unit vector α is taken as pointing in the 

direction of the “design point” in the standard normal space; in [Pradlwarter et al. 2005], the 

direction of α is identified as the normalized gradient of the performance function ( )⋅θg  in the 

standard normal space; finally, in a previous paper by the authors [Zio and Pedroni, 2010], the 

important direction α is taken as the one minimizing the variance (5) of the failure probability 

estimator (4). This latter method produces more accurate and precise failure probability estimates 

than those provided by the other three techniques of literature and, for this reason, its adoption is 

recommended for the estimation of the small failure probabilities of T-H passive systems. 

In more details, in [Zio and Pedroni, 2010] the optimal important direction opt
α  for Line Sampling 

is defined as the one minimizing the variance ( )[ ]TNFP̂2σ  (5) of the LS failure probability estimator 

( ) TNFP̂  (4). Notice that opt
α  can be expressed as the normalized version of a proper vector opt

θ  in 

the standard normal space, i.e., 
2

optoptopt
θθα = . Thus, in order to search for a physically 

meaningful important unit vector opt
α  (i.e., a vector that optimally points towards the failure 
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domain F of interest), opt
θ  should belong to the failure domain F of interest, i.e. Fopt ∈θ  or, 

equivalently, ( ) 0>optg θθ . 

In mathematical terms, the optimal LS important direction opt
α  is obtained by solving the following 

nonlinear constrained minimization problem: 

( )[ ] ( )[ ]{ }
( )( ).0,i.e.tosubject

ˆminˆ:Find 22

2
2

>∈

==
=

θθ

θθα
θθα

θ

σσ

gF

FPFP TT NNoptoptopt

 (6) 

The conceptual steps of the procedure for solving (6) are [Zio and Pedroni, 2010]: 

1. An optimization algorithm proposes a candidate solution 
2

θθα =  to (6): for example, 

probabilistic search algorithms like Genetic Algorithms (GAs) [Konak et al., 2006; 

Marseguerra et al., 2006] are particularly suitable for multivariate nonlinear problems like 

those involving nuclear passive safety systems [Zio and Pedroni, 2010]. 

2. The LS failure probability estimator ( ) TNFP̂  (4) and the associated variance ( )[ ]TNFP̂2σ  (5) 

are calculated using the unit vector 
2

θθα =  proposed as important direction in step 1. 

above. 

3. The variance ( )[ ]TNFP̂2σ  obtained in step 2. above is the objective function to be 

minimized. 

4. The feasibility of the proposed solution 
2

θθα =  is checked by evaluating the system PF 

gθ(·) (i.e., by running the system model code) in correspondence of θ: if the proposed 

solution 
2

θθα =  is not feasible (i.e., if F∉θ  or, equivalently, ( ) 0≤θθg ), it is penalized 

by increasing the value of the corresponding objective function ( )[ ]TNFP̂2σ . 

5. Steps 1. − 4. are repeated until a predefined stopping criterion is met and the optimization 

algorithm identifies the optimal unit vector 
2

optoptopt
θθα = . 

 

Notice that i) the optimization search requires the iterative evaluation of hundreds or thousands of 

possible solutions 
2

θθα =  to (6) and ii) 2·NT or 3·NT system performance analyses (i.e., runs of 

the system model code) have to be carried out to calculate the objective function ( )[ ]TNFP̂2σ  for 

each proposed solution (step 2. and 3. above); as a consequence, the computational effort associated 

to this technique would be absolutely prohibitive with a system model code requiring hours or even 

minutes to run a single simulation. Hence, for practical applicability, one has to resort to a 
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regression model as a fast-running approximator of the original system model code for performing 

the calculations in steps 2. and 4. above, to make the computational cost acceptable. 

The regression model suggested is the classical three-layered feed-forward ANN [Bishop, 1995]. In 

order to improve the accuracy in the approximation of the system PF gθ(·) (needed for an accurate 

estimation of the LS important direction α), the employed ANN models can be trained by a properly 

devised sequential, two-step algorithm based on error back-propagation, as proposed in [Zio and 

Pedroni, 2010]. In extreme synthesis, a first-step ANN regression model is built using a set of 

input/output data examples. The resulting ANN model is used (instead of the original, long-running 

system model code) to provide an approximation to the design point of the problem: this is meant to 

provide an approximate, rough indication of the real location of the failure domain F of interest. 

Subsequently, a new data set is randomly generated centred on the approximate design point 

previously identified: a second-step ANN model is then constructed on these newly generated data 

set. This should result in an ANN regression model which is more accurate in proximity of the 

failure domain F of interest, thus providing reliable estimates of the system PF gθ(·) for the 

identification of the LS important direction α [Zio and Pedroni, 2010]. 

 

For completeness, we report some of the results obtained in a previous work by the authors [Zio and 

Pedroni, 2010], in which the optimized LS method described above is applied for the estimation of 

the small functional failure probability P(F) of the passive decay heat removal system of a Gas-

cooled Fast Reactor (GFR) of literature [Pagani et al., 2005] (notice that in this example P(F) = 

3.541·10-4). A detailed description of the system is not reported here for brevity: the interested 

reader is referred to [Pagani et al., 2005] for details. 

Further, the benefits coming from the use of the proposed method is shown by means of a 

comparison between the estimation accuracies and precisions of the following simulation methods: 

i) standard Monte Carlo Simulation (MCS); ii) Latin Hypercube Sampling (LHS) [Helton and 

Davis, 2003]; iii) standard Importance Sampling (IS) [Au and Beck, 2003a; Au, 2004]; iv) a 

combination of standard Importance Sampling (IS) and Latin Hypercube Sampling (LHS) (hereafter 

referred to as IS + LHS) [Olsson et al., 2003]; v) Subset Simulation (SS) [Au and Beck, 2001 and 

2003b]; vi) optimized Line Sampling (LS) [Zio and Pedroni, 2010]; vii) a combination of optimized 

Line Sampling (LS) and Latin Hypercube Sampling (LHS) (hereafter referred to as LS + LHS) [Zio 

and Pedroni, 2010]. Part of the results used in the comparison are derived from the manipulation of 

results previously obtained by the authors [Zio and Pedroni, 2009b, c and 2010]. 

In order to properly represent the randomness of the probabilistic simulation methods i)-vii) 

adopted and provide a statistically meaningful comparison between their performances in the 
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estimation of the system failure probability P(F), S = 2000 independent runs of each method have 

been carried out. In each simulation s = 1, 2, …, S, the percentage relative absolute error εs between 

the true (reference) value of the system failure probability P(F) and the corresponding estimate 

TN
sFP )(ˆ  obtained with NT samples is computed as follows: 

100
)(

)(ˆ)(
⋅

−
=

FP

FPFP TN
s

sε , s = 1, 2, …, S (7) 

The accuracies of the simulation methods of interest in the estimation of P(F) are then compared in 

terms of the mean percentage relative absolute error ε  over S = 2000 runs: 

∑
=

⋅=
S

s
sS 1

1 εε  (8) 

The quantity (8) provides a measure of the percentage relative absolute error in the estimation of the 

failure probability P(F) made on average in a single run by the simulation method with NT samples; 

obviously, the lower ε , the higher the accuracy of the method. 

The failure probability estimates TN
sFP )(ˆ , s = 1, 2, …, S, are then used to build a bootstrapped 95% 

Confidence Interval (CI) for the failure probability estimator ( ) TNFP̂ , i.e., 

( ) ( )[ ]
TNTN FPCIFPCI

UL ˆ,ˆ,
,  (9) 

where ( ) TNFPCI
U ˆ,

 and ( ) TNFPCI
L ˆ,

 are the 2.5th and 97.5th percentiles, respectively, of the bootstrapped 

empirical distribution of the failure probability estimator ( ) TNFP̂ . The percentage relative width 

CIw  of the bootstrapped 95% Confidence Interval (CI) of the LS failure probability estimator 

( ) TNFP̂  is then computed as 

( ) ( )

( ) 100
ˆ,ˆ, ⋅

−
=

FP

LU
w

TNTN FPCIFPCI
CI  (10) 

Obviously, the lower CIw , the higher the precision of the method. 

Finally, in addition to the accuracy and precision of the failure probability estimator, also the 

computational time associated to the simulation method has to be taken into account. To this aim, 

the FOM can be used: 

( )( ) ( )( ) comp
N

comp
N tFPtFP TT ⋅

≈
⋅

=
ˆˆ

1
ˆ

1
FOM

22 σσ
 (11) 
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where compt  is the computational time required by the simulation method and ( )[ ]TNFP̂2σ  is defined 

in (5). Since ( )( ) T
N NFP T ∝ˆ2σ  and approximately Tcomp Nt ∝ , the FOM is independent of NT. 

Obviously, the higher the FOM, the higher the computational efficiency of the method. 

 

Table 3 reports the values of the performance indicators ε  (8), CIw  (10) and FOM (11) obtained 

with NT = 1850 samples by the simulation methods i)-vii) (notice that since NT is the same for all 

the simulation methods, performance indicators ε  (8) and CIw  (10) can be compared fairly). The 

number of T-H code runs required by each method is also reported: actually, when a single run of 

the system model code lasts several hours (which is often the case for passive safety systems) the 

total number of simulations is the critical parameter which determines the overall computational 

cost (i.e., tcomp) associated to the method. In particular, Nc,P(F) is the number of code runs used by the 

algorithm only to estimate the failure probability P(F); instead, Nc,add is the number of additional 

code runs required to set up the method: for example, for IS and IS + LHS, Nc,add code runs are used 

to build the Importance Sampling Density (ISD) by identification of the “design point” of the 

problem [Au, 2004]; instead, for LS and LS + LHS, Nc,add code runs are used to identify the 

important direction α by minimization of the variance of the LS failure probability estimator [Zio 

and Pedroni, 2010]. 

 

It can be seen that the optimized Line Sampling methods (i.e., both LS and LS + LHS) provide 

more accurate and precise failure probability estimates than the other methods: actually, the mean 

percentage errors ε  are about 13 to 380 times lower than those of the other methods, whereas the 

percentage 95% CI widths CIw  are about 16 to 278 times lower than those of the other methods. 

Finally, although the computational cost associated to the optimized Line Sampling methods is 

higher than that of the other methods (because the total number of T-H code runs is more than three 

times larger), the overall computational efficiency of the method is significantly higher: actually, 

the FOM is about 2 to 4 orders of magnitude larger than that of the other methods. 

 

The previous example has served to demonstrate that the optimized LS methods indeed provide 

more accurate and precise failure probability estimates than the other simulation methods 

considered. However, this must be achieved with a small number of samples (and, thus, of T-H 

model evaluations: say, few tens or hundreds depending on the application), because in practice the 

T-H computer codes require several hours to run a single simulation [Fong et al., 2009]. Thus, we 

consider here a practical situation where the number Nc,P(F) of T-H code runs allowed for estimating 
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the small failure probability P(F) = 3.541·10-4 is set to few tens (e.g., 30 in this case). The results 

are summarized in Table 4. 

 

It can be seen that even in this case the optimized Line Sampling methods (i.e., both LS and LS + 

LHS) provide more accurate and precise failure probability estimates than the other methods: 

actually, the mean percentage errors ε  are about 6 to 44 times lower than those of the other 

methods, whereas the percentage 95% CI widths CIw  are about 6 to 163 times lower than those of 

the other methods. Finally, the global efficiency of the method is significantly higher: actually, the 

FOM is about 1 to 3 orders of magnitude larger than that of the other methods. 

These results confirm the recommendation of adopting this method. 

5.2 Uncertainty analysis 

The objective of the uncertainty analysis is to propagate the uncertainty associated to the input 

parameters x  = {x1, x2, …, xj, …, xni} through the deterministic, long-running T-H code in order to 

quantify the uncertainty associated to the output variables y = {y1, y2, …, yl, …, xno} of interest and 

to the performance function Y(x) of the passive system (e.g., computing Probability Density 

Functions-PDFs, Cumulative Distribution Functions-CDFs and percentiles). 

In all fairness, notice that the strongly recommended LS technique allows only the (efficient) 

calculation of the failure probability of the passive system, but it does not allow a complete 

uncertainty propagation: actually, no Probability Density Functions (PDFs), Cumulative 

Distribution Functions (CDFs) or percentiles of the T-H code outputs of interest can be identified in 

a single simulation run. Thus, if the analyst is interested in propagating the uncertainty onto the 

output, two options are recommended: 

1. in the (unlikely) case that the T-H model is sufficiently simple and requires seconds or 

minutes to run, the use of the Subset Simulation (SS) algorithm may represent the optimal 

choice (Section 5.2.1); 

2. in those (more realistic) cases where the T-H model requires many hours, or days, to 

perform a single evaluation, the use of fast-running surrogate regression models (e.g., 

bootstrapped Artificial Neural Networks-ANNs, in this work) instead of the long-running 

original T-H code seems mandatory (Section 5.2.2). 

These recommendations are further explained and motivated below. 

5.2.1 Uncertainty propagation using Subset Simulation 

The idea underlying the Subset Simulation (SS) method is to convert the simulation of an event 

(e.g., the rare failure event) into a sequence of simulations of intermediate conditional events 
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corresponding to subsets (or subregions) of the uncertain input parameter space (for example, if a 

passive decay heat removal system in a nuclear reactor is assumed to fail when the fuel peak 

cladding temperature exceeds 725 °C, then plausible intermediate conditional events could be 

represented by the peak cladding temperature exceeding 350, 500 and 650 °C, respectively). During 

simulation, the conditional samples (lying in the intermediate subsets or subregions) are generated 

by means of properly designed Markov chains; by so doing, the conditional samples gradually 

populate the successive intermediate subsets (or subregions) up to the target (failure) region [Au 

and Beck, 2001; Au and Beck, 2003b]. 

In synthesis, the SS algorithm proceeds as follows. First, N vectors {x0
k: k = 1, 2, …, N} are 

sampled by standard MCS, i.e., from the original probability density function q(·). The 

corresponding values of the response variable {Y(x0
k): k = 1, 2, …, N} are then computed and the 

first threshold value y1 (identifying the first intermediate conditional event) is chosen as the (1 – 

p0)N
th value in the increasing list of values {Y(x0

k): k = 1, 2, …, N}. With this choice of y1, there are 

now p0N samples among {x0
k: k = 1, 2, …, N} whose response Y(x) lies in the intermediate 

subregion F1 = {x: Y(x) > y1}. Starting from each one of these samples, Markov Chain Monte Carlo 

(MCMC) simulation is used to generate (1 – p0)N additional conditional samples in the intermediate 

subregion F1 = {x: Y(x) > y1}, so that there are a total of N conditional samples {x1
k: k = 1, 2, …, N} 

∈ F1. Then, the intermediate threshold value y2 is chosen as the (1 – p0)N
th value in the ascending 

list of {Y(x1
k): k = 1, 2, …, N} to define F2 = {x: Y(x) > y2}. The p0N samples lying in F2 function as 

‘seeds’ for sampling (1 – p0)N additional conditional samples lying in F2, making up a total of N 

conditional samples {x2
k: k = 1, 2, …, N} ∈ F2. This procedure is repeated until the samples lying 

in the intermediate subregion Fm-1 = {x: Y(x) > ym-1} are generated to yield ym > y as the (1 – p0)N
th 

value in the ascending list of {Y(xm-1
k): k = 1, 2, …, N} [Au and Beck, 2001; Au and Beck 2003b; 

Au, 2005; Au et al., 2007]. 

The superior efficiency of SS with respect to standard MCS in the uncertainty propagation task has 

been widely demonstrated in the open literature: the interested reader may refer to [Au and Beck, 

2001; Au and Beck, 2003b] for mathematical details, to [Ching et al., 2005; Katafygiotis and 

Cheung, 2005 and 2007; Au, 2007; Au et al., 2007; Pradlwarter et al., 2007] for illustrative 

applications to high-dimensional (i.e., n ≥ 100) structural reliability problems and to [Zio and 

Pedroni, 2009b] for an application to the functional failure analysis of a T-H passive system. 

 

For completeness, we report some of the results previously obtained by the authors [Zio and 

Pedroni, 2009b] in the use of the SS method to propagate the uncertainties through the T-H model 

of the passive decay heat removal system of a Gas-cooled Fast Reactor (GFR) analyzed in the 
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previous Section 5.1 [Pagani et al., 2005]. Nine uncertain input parameters {xj: j = 1, 2, …, 9} are 

taken into account and two safety variables {yl: l = 1, 2} (i.e., the hot- and average-channel 

temperatures of the naturally circulating coolant leaving the core) are considered as outputs of 

interest of the T-H system model code. The output variables {yl: l = 1, 2} are then used to generate a 

single-valued system performance indicator (or critical response variable) Y(x) for the evaluation of 

passive system failure; further details can be found in [Pagani et al., 2005; Zio and Pedroni, 2009b]. 

The performance of SS is compared to that of LHS: notice that LHS has been chosen as benchmark 

method due to its popularity and wide use in Probabilistic Risk Assessment (PRA) [Helton and 

Davis, 2003; Sallaberry et al., 2008; Helton and Sallaberry, 2009]. Following the approach 

presented in [Au et al., 2007] and subsequently used in [Zio and Pedroni, 2009b], Figure 1, left 

shows the empirical Cumulative Distribution Function (CDF) of the performance function Y(x) of 

the passive decay heat removal system considered; in addition, Figure 1, right focuses on the 

portion of CDF where the cumulative probability ranges between 0.999 and 1. The results produced 

by SS with a total of NT = 1850 samples (i.e., T-H code runs) are shown in solid lines, whereas 

those produced by LHS with the same number of samples/T-H code runs (i.e., NT = 1850) are 

shown in dashed lines. The dot-dashed lines correspond to the results obtained by LHS with NT = 

500000 samples/T-H code runs: this number of samples is largely sufficient for efficiently 

estimating the CDF even where the cumulative probability ranges between 0.999 and 1: thus, the 

corresponding results are taken as benchmarks. 

 

Notice that the results from SS are satisfactorily close to the reference solution in all the probability 

ranges considered. On the contrary, LHS with 1850 samples is not able to produce accurate results 

for values of the cumulative probability very close to 1 (Figure 1, right). This is due to the fact that 

with 1850 samples there are on average only 1850·(1 – 0.999) = 1850·0.001 ~ 2 samples in Figure 

1, right. In contrast, SS (due to successive conditional MCMC simulations) generates 1850 and 500 

conditional samples in Figure 1, left and right, respectively, giving enough information for an 

efficient estimation of the CDF.  

Then, the 99.9th percentile of the performance function Y(x) of the passive system is estimated by 

SS with 1850 samples (obtaining 1120.1 °C) and LHS with 1850 (obtaining 1095.3 °C) and 500000 

samples (obtaining 1118.9 °C). It can be seen that the estimate of the 99.9th percentile produced by 

SS with 1850 samples is very accurate and close to the reference one, i.e., the one computed by 

LHS with 500000 samples: however, this result is obtained with a computational effort which is 

500000/1850 ≈  270 times lower; on the contrary, the percentile identified by LHS with 1850 

samples is much lower than the reference one. 
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Finally, to assess quantitatively the statistical properties and the precision of the 99.9th percentile 

estimates produced by SS with 1850 samples and LHS with 1850 samples, S = 100 independent 

runs have been carried out for each simulation method and the empirical 95% Confidence Intervals 

(CIs) of the 99.9th percentile estimates thereby obtained have been computed: the obtained CIs are 

[1068.9, 1183.0] and [1012.4, 1242.1] for SS and LHS, respectively. It can be seen that the width of 

the 95% CI produced by SS is about 2 times lower than that of LHS: thus, conversely, the precision 

of the estimate is 2 times higher. 

 

As a final remark, it is worth noting that for SS (differently from LS) there does not seem to exist 

any indication that it is possible to reduce the number of samples (i.e., the number of T-H model 

code evaluations) to below a few hundreds. Actually, referring to the computational flow of SS 

described above, at least N = 100 samples have to be generated in each subset Fi, i = 1, 2, …, m, to 

produce reliable estimates in the uncertainty propagation phase: thus, if high quantiles (e.g., the 

99.9th or 99.99th percentiles) have to be estimated (which is often the case for passive safety 

systems), then an amount of about N·m = 100·3 = 300 or N·m = 100·4 = 400 samples have to be 

generated, respectively. As a consequence, if the T-H model requires many hours, or days, to 

perform a single evaluation, SS is not suitable. 

5.2.2 Uncertainty propagation using bootstrapped Artificial Neural Networks 

In those cases where the T-H model requires many hours, or days, to perform a single evaluation, 

the use of fast-running surrogate regression models instead of the long-running original T-H code 

becomes somewhat mandatory: because calculations with the surrogate model can be performed 

quickly, the problem of long simulation times is circumvented. 

Here, the use of Artificial Neural Networks (ANNs) is recommended for this task. In extreme 

synthesis, ANNs are computing devices inspired by the function of the nerve cells in the brain 

[Bishop, 1995]. They are composed of many parallel computing units (called neurons or nodes) 

arranged in different layers and interconnected by weighed connections (called synapses). Each of 

these computing units performs a few simple operations and communicates the results to its 

neighbouring units. From a mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., 

sigmoidal) basis functions with adaptable parameters w* that are adjusted by a process of training 

(on many different input/output data examples), i.e., an iterative process of regression error 

minimization [Rumelhart et al., 1986]. ANNs have been demonstrated to be universal approximants 

of continuous nonlinear functions (under mild mathematical conditions) [Cybenko, 1989], i.e., in 

principle, an ANN model with a properly selected architecture can be a consistent estimator of any 

continuous nonlinear function, e.g. any nonlinear T-H code simulating the system of interest. 
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Further details about ANN regression models are not reported here for brevity; the interested reader 

may refer to the cited references and the copious literature in the field. The particular type of ANN 

considered in this paper is the classical three-layered feed-forward ANN trained by the error back-

propagation algorithm. 

Notice that the recommendation of using ANN regression models is mainly based on i) theoretical 

considerations about the (mathematically) demonstrated capability of ANN regression models of 

being universal approximants of continuous nonlinear functions (e.g., any nonlinear T-H code 

simulating the system of interest) [Cybenko, 1989] and ii) the experience of the authors’ in the use 

of ANN regression models for propagating the uncertainties through T-H model codes simulating 

passive safety systems [Pedroni et al., 2010; Zio et al., 2010]: for example, in [Pedroni et al., 2010], 

both the accuracy and precision of ANN regression models in estimating the percentiles of the 

temperature of the naturally circulating coolant in a passive decay heat removal system have been 

compared and shown to be superior to those of simple quadratic Response Surface (RS) regression 

models. Since no further comparisons with other types of regression models have been performed 

by the authors yet, no additional proofs of the superiority of ANNs with respect to other regression 

models can be provided at present, in general terms. 

 

To evaluate the additional source of model uncertainty introduced by the ANN empirical regression 

model the use of an ensemble of ANN regression models, constructed on different data sets 

bootstrapped from the original one is recommended [Zio, 2006; Storlie et al., 2009]. The bootstrap 

method is a distribution-free inference method which requires no prior knowledge about the 

distribution function of the underlying population [Efron and Thibshirani, 1993]. The basic idea is 

to generate a sample from the observed data by sampling with replacement from the original data 

set [Efron and Thibshirani, 1993]: each of these bootstrapped data sets is used to build a 

bootstrapped regression model which is used to calculate the quantity of interest (e.g., in this case of 

uncertainty propagation, the quantity of interest may be represented by the vector y of the outputs of 

the T-H model code, by the performance function of the passive system Y(x) and by their 

percentiles). In this context, the bootstrap algorithm is used to quantify, in terms of confidence 

intervals, the model uncertainty associated to the estimates provided by the ANN regression 

models. Recall also that from the theory and practice of ensemble empirical models, it can be shown 

that the estimates given by bootstrapped ANN regression models are in general more accurate than 

the estimate of the best ANN regression model in the bootstrap ensemble of ANN regression 

models [Zio, 2006; Cadini et al., 2008].  
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In synthesis, the following steps must be undertaken to perform uncertainty propagation by means 

of bootstrapped ANNs [Zio, 2006; Storlie et al., 2009]: 

1. Generate a data set Dtrain of training input/output data examples by sampling a (possibly 

reduced) number Ntrain of independent input parameters values xp, p = 1, 2, ..., Ntrain, and 

calculating the corresponding set of Ntrain output vectors yp = µy(xp) through the mechanistic 

T-H system code. 

2. Generate a set Dval of validation input/output data examples (different from Dtrain) by 

sampling a (possibly reduced) number Nval of independent input parameters values xp, p = 1, 

2, ..., Nval, and calculating the corresponding set of Nval output vectors yp = µy(xp) through the 

mechanistic T-H system code. 

3. Build an ANN regression model f(x, w*) using the training and validation data sets trainD  and 

valD ; in particular, the training data set trainD  is used to calibrate the internal parameters w* 

of the regression model, whereas the validation data set valD  is used to monitor the accuracy 

of the ANN model during the training procedure in order to avoid overfitting of the training 

data according to the so-called early stopping method. In practice, the RMSE is computed 

on Dval at different iterative stages of the training procedure: at the beginning of training, 

this value decreases as does the RMSE computed on the training set Dtrain; later in the 

training, if the ANN regression model starts overfitting the data, the RMSE calculated on the 

validation set Dval starts increasing and training must be stopped [Bishop, 1995]. 

4. Measure the accuracy of the constructed regression model constructed in step 3. by 

computing proper numerical figures (e.g., the commonly adopted coefficient of 

determination 2R  and RMSE) for each output yl, l = 1, 2, ..., no, on a new data set 

( ){ }testpptest NpD ...,,2,1,, == yx  of size Ntest, purposely generated for testing the regression 

model built [Marrel et al., 2009], and thus different from those used for training and 

validation. 

5. Use the regression model f(x, w*), in place of the original T-H model code, to provide a 

point estimate Q̂  of the quantity Q of interest (e.g., in this case of uncertainty propagation, 

the quantity Q may be represented by the vector y of the outputs of the T-H model code, by 

the performance function of the passive system Y(x) and by their percentiles). 

6. Build an ensemble of B (e.g., B = 500-1000) regression models ( ){ }Bbbb ...,,2,1,, * =wxf  on 

the basis of bootstrap data sets ( ){ }trainbpbpbtrain NpD ...,,2,1,, ,,, == yx , b = 1, 2, ..., B, 
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generated by performing random sampling with replacement from the original training data 

set ( ){ }trainpptrain NpD ...,,2,1,, == yx . 

7. Use each of the bootstrapped regression models fb(x, wb
*), b = 1, 2, ..., B, to calculate an 

estimate bQ̂ , b = 1, 2, ..., B, for the quantity Q of interest: by so doing, a bootstrap-based 

empirical probability distribution for the quantity Q is produced which is the basis for the 

construction of the corresponding confidence intervals. 

8. Calculate the so-called Bootstrap Bias Corrected (BBC) point estimate BBCQ̂  for Q (see 

[Baxt and White, 1995] for details) and the corresponding two-sided Bootstrap Bias 

Corrected (BBC)-100·(1 - α)% Confidence Interval (CI) (using the bootstrap-based 

empirical probability distribution for the quantity Q obtained in step 7. above). 

The complete and detailed bootstrap algorithm is not reported here for brevity; some technical 

details can be found in [Efron and Thibshirani, 1993; Zio, 2006; Cadini et al., 2008; Secchi et al., 

2008; Storlie et al., 2009; Pedroni et al., 2010; Zio et al., 2010]. 

 

For completeness, we report some of the results obtained in a previous work by the authors [Pedroni 

et al., 2010], in which bootstrapped ANNs are used to propagate the uncertainties through the T-H 

model of Section 5.1 [Pagani et al., 2005]; again, the performance of bootstrapped ANNs is 

compared to that of LHS. 

Figure 2, left shows the empirical Cumulative Distribution Function (CDF) of the performance 

function Y(x) of the passive decay heat removal system considered; in addition, Figure 2, right 

focuses on the portion of CDF where the cumulative probability ranges between 0.95 and 1. The 

results obtained with NT = 500000 estimations from B = 1000 by bootstrapped ANNs (built on Ncode 

= Ntrain + Nval + Ntest = 80 + 20 + 10 = 110 input/output examples, i.e., T-H code runs) are shown in 

solid lines, whereas those produced by LHS with the same number of T-H code runs (i.e., NT = Ncode 

= 110) are shown in dashed lines. Notice that the comparison between these two approaches is fair 

because the number Ncode of runs of the original T-H system model code (and thus the associated 

overall computational effort) is the same (i.e., Ncode = 110); however, for LHS the few system model 

code runs are directly used to produce the CDF of interest, whereas for bootstrapped ANNs they are 

used to build the regression models, which are in turn employed to produce the CDF estimate. The 

dot-dashed lines correspond to the results obtained by LHS with NT = Ncode = 500000 samples (i.e., 

T-H code runs): this number of samples is largely sufficient for efficiently estimating the CDF even 

where the cumulative probability ranges between 0.95 and 1: thus, the corresponding results are 

taken as benchmarks. 
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The bootstrapped ANNs are shown to be quite reliable and accurate, as the CDF produced is 

satisfactorily close to the reference one (i.e., the one produced by LHS with NT = Ncode = 500000 

samples) in all the probability ranges considered. Also, the bootstrapped ANN results are obtained 

at a much lower computational effort: actually, the number Ncode of T-H code runs (i.e., 110) is 

about 4500 times lower than that of the reference case (i.e., 500000). The overall CPU time required 

by the use of bootstrapped ANNs (i.e., on average 2.22 h) is about 180 times lower than that 

required by the use of the original T-H model code (i.e., on average 409 h). 

Further, it can be seen that the bootstrapped ANNs built on Ncode = Ntrain + Nval + Ntest = 80 + 20 + 

10 = 110 input/output examples (i.e., T-H code runs) outperform LHS with the same number Ncode = 

110 of T-H code simulations: actually, LHS is not able to produce accurate results, in particular for 

values of the cumulative probability very close to 1 (Figure 2, right). 

The two approaches are further compared in the estimation of the 95th percentile of the performance 

function Y(x) of the passive decay heat removal system. The BBC point estimate of the 95th 

percentile of the performance function Y(x) obtained with NT = 500000 estimations from B = 1000 

bootstrapped ANNs and with NT = 110 and 500000 estimations from LHS are 802.5 °C, 824.1 °C 

and 794.2 °C, respectively. It can be seen that the estimate produced by the bootstrapped ANNs is 

quite close to the reference one, i.e., the one obtained by LHS with 500000 samples: the 

corresponding percentage Relative Absolute Error (RAE) is 1.04%; on the contrary, the percentile 

identified by LHS with NT = 110 samples is considerably larger: the corresponding percentage RAE 

is 3.74%. It can be seen that the percentage RAE produced by the bootstrapped ANNs is 3.6 times 

lower than that of LHS with NT = 110 samples: thus, conversely, the accuracy of the estimate is 3.6 

times higher. 

Finally, to assess quantitatively the statistical properties and the precision of the 95th percentile 

estimates produced by the methods considered, the 95% Confidence Interval (CI) associated to the 

estimates are evaluated. In particular, S = 1000 independent runs of LHS with NT = Ncode = 110 

samples are carried out and the empirical 95% Confidence Interval (CI) of the 95th percentile 

estimate thereby obtained has been computed: it turns out to be [785.6, 868.2]; on the contrary, the 

BBC 95% CI is produced by B = 1000 bootstrapped ANN regression models constructed on Ncode = 

110 data examples according to steps 1. – 8. above: it turns out to be [777.06, 818.92]. It can be 

seen that the width of the CI produced by bootstrapped ANNs is about 2 times lower than that of 

LHS: thus, conversely, the precision of the estimate is 2 times higher. 
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5.3 Sensitivity analysis 

For safety-critical systems, like nuclear passive systems, the task of sensitivity analysis is 

fundamental for reliability/failure probability assessment and safety decision-making and assurance 

[Helton and Sallaberry, 2009]. In particular, in the functional failure analysis of a T-H passive 

system, sensitivity analysis can be a useful tool for identifying the uncertain parameters (i.e., the 

uncertain inputs to the T-H code) that contribute most to the variability of the model outputs (i.e., 

the coolant outlet temperatures): this information is important for the identification of those 

parameter and hypothesis uncertainties that are most relevant in determining system failure [Saltelli 

et al., 2008; Volkova et al., 2008; Marrel et al., 2009]. 

In general, the sensitivity analysis outcomes provide two important insights. On the one side, the 

analyst is able to identify those parameters/variables whose epistemic uncertainty plays a major role 

in determining the functional failure of the T-H passive system: consequently, his/her efforts can be 

focused on increasing the state-of-knowledge on these important parameters/variables and the 

related physical phenomena (for example, by the collection of experimental data one may achieve 

an improvement in the state-of-knowledge on the correlations used to model the heat transfer 

process in natural convection and a corresponding reduction in the uncertainty); on the opposite 

side, the analyst can identify those parameters/variables that are not important and may be excluded 

from the modeling and analysis. 

The options recommended for performing sensitivity analysis are the same as those proposed for 

uncertainty analysis (Section 5.2), as explained below. 

5.3.1 Sensitivity analysis using Subset Simulation 

The Markov chain samples generated by SS can be used not only for estimating the conditional 

probabilities but also to infer the probable scenarios that will occur in the case of failure [Au, 2005]. 

Intuitively, from the comparison of the probability density function )|( Fxq j  of the uncertain 

parameter xj, j = 1, 2, …, ni, conditional to the occurrence of failure F, with the unconditional 

probability density function q(xj), an indication can be obtained on how important is the parameter 

xj in affecting the system failure. Formally, for any given value of xj the Bayes’ theorem reads, 

)(
)(

)|(
)|( FP

xq

Fxq
xFP

j

j
j = , j = 1, 2, …, ni (12) 

so that )|( jxFP  is insensitive to xj when )|( Fxq j  ~ )( jxq , i.e. when the conditional probability 

density function )|( Fxq j  is similar in shape to the PDF q(xj) [Au and Beck, 2003; Au, 2005; Au et 

al., 2007]. The effectiveness of this approach for sensitivity analysis has been demonstrated by a 
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number of studies conducted in the field of structural reliability: for example, in [Au and Beck, 

2003] and [Au, 2005], the approach has been effectively used to address a 1500-dimensional 

problem concerning a steel frame subject to stochastic ground motion; in [Au et al., 2007] the 

method has been applied to perform a compartment fire risk analysis where seven uncertain 

parameters were considered, whereas in [Zio and Pedroni, 2009b] it has been applied to perform the 

sensitivity analysis of the model of Section 5.1. 

 

In this latter work, the sensitivity of the passive system performance to the ni = 9 uncertain input 

parameters has been studied by examining the change of the sample distributions q(xj|Fi), j = 1, 2, 

…, ni, i = 1, 2, …, m, at different conditional levels Fi, i = 1, 2, …, m. The histograms of the 

conditional samples of two of the nine uncertain parameters (i.e., x2, the pressure level established 

in the guard containment after the LOCA, and x8, the friction factor in mixed convection) at 

different conditional levels for a single SS run are shown in Figure 3, left. It can be seen that the 

performance of the passive system is strongly sensitive to the pressure level established in the guard 

containment after the LOCA, as indicated by the significant leftward shift of its empirical 

conditional distribution (histograms) from the unconditional one (solid lines). A slight sensitivity of 

the passive system performance is also observed with respect to the correlation errors in the friction 

factor (rightward shift) in mixed convection. 

The information contained in the empirical conditional distributions q(xj|Fi), j = 1, 2, …, ni, i = 1, 2, 

…, m, can then be used to refine the sensitivity information by obtaining the distribution of the 

system failure probability conditional on the values of the individual uncertain input parameters, i.e. 

P(F|xj), according to (12) (Figure 3, right): this information is relevant because it quantifies how the 

failure probability P(F) of the passive system would change if the value of the uncertain parameter 

xj were set to a given value (e.g., if its epistemic uncertainty were reduced). 

 

Note that SS presents the advantage over other standard techniques of sensitivity analysis, of being 

directly “embedded” in the computation of the failure probability: the SS algorithm produces the 

empirical conditional distributions of Figure 3 during the simulation that is performed to compute 

the functional failure probability of the passive system. In other words, while estimating the 

functional failure probability of the system, sensitivity analysis results are produced that can be 

readily visualized for identification and ranking of the most important variables. 

5.3.2 Sensitivity analysis using bootstrapped Artificial Neural Networks 

Bootstrapped ANNs are used to replace the original T-H code in the multiple (e.g., many thousands) 

system performance evaluations (for different combinations of system inputs) required by 
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sensitivity analysis; thus, in principle, bootstrapped ANNs could be used in the development of any 

of the sensitivity analysis methods available in the open literature. 

Here we recommend the use of bootstrapped ANNs for computing first- and total-order Sobol 

sensitivity indices [Sobol, 1993] for the vector y of the outputs of the T-H code and for the passive 

system performance function Y(x): see [Zio et al., 2010] for a preliminary analysis of this kind. 

By definition, the first-order Sobol sensitivity index Sj
l, j = 1, 2, …, ni, l = 1, 2, …, no, quantifies the 

proportion of the variance of the output yl, l = 1, 2, …, no, that can be attributed to the variance of 

the uncertain input variable xj alone, i.e., without taking into account interactions with other input 

variables; on the contrary, the total-order Sobol sensitivity index STj
l, j = 1, 2, …, ni, l = 1, 2, …, no, 

quantifies the proportion of the variance of the output yl, l = 1, 2, …, no, that can be attributed to the 

variance of the uncertain input variable xj taking into account the interactions (of all the orders) 

with all the other input variables. A thorough description of these sensitivity measures goes beyond 

the scope of this work: mathematical details can be found in [Saltelli, 2002a, b; Saltelli et al., 2008]. 

As pointed out in [Saltelli, 2002a], the sensitivity indices Sj
l and STj

l have the advantage of being 

global because the effect of the entire distribution of the parameter whose uncertainty importance is 

evaluated, is considered; moreover, this sensitivity index is also “model free” because its 

computation is independent from assumptions about the model form, such as linearity, additivity 

and so on. The drawback of this approach relies in the computational burden associated to its 

calculation: actually, thousands or millions of system model evaluations are frequently required for 

the evaluation of Sobol indices through Monte Carlo-based techniques [Saltelli, 2002a; Saltelli et 

al., 2008]. 

 

For completeness, we complete the results obtained in a previous work by the authors [Zio et al., 

2010] (in which bootstrapped ANNs were applied for computing first-order Sobol indices for one of 

the outputs of the model of Section 5.1) by computing first- and total-order Sobol indices Sj
Y and 

STj
Y for the performance function Y(x) of the model of the T-H passive system of Section 5.1. The 

algorithm proposed by [Saltelli, 2002a] has been implemented to obtain the “true” (i.e., reference) 

values of the first- and total-order Sobol sensitivity indices Sj
Y and STj

Y for the input variables xj, j = 

1, 2, …, 9: these values obtained with NT = 110000 runs of the original T-H model code are 

reported for reference in Table 5 (in parentheses). 

Table 5 reports also the BBC point estimates Y
BBCjS ,

ˆ  and Y
BBCTjS ,

ˆ  for Y
jS  and Y

TjS , j = 1, 2, …, 9, 

obtained with NT = 110000 estimations from B = 1000 bootstrapped ANN models built on Ncode = 

Ntrain + Nval + Ntest = 80 + 20 + 10 = 110 input/output examples, i.e., T-H code runs; the Table also 

shows the corresponding Bootstrap Bias Corrected (BBC)-95% Confidence Intervals (CIs): the 
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information conveyed by these intervals is important when few data are used to train the 

bootstrapped ANNs and the consequent confidence of the analyst on the Sobol index point 

estimates Y
BBCjS ,

ˆ  and Y
BBCTjS ,

ˆ  is poor, like in the present case. 

 

It can be seen that bootstrapped ANNs are quite accurate because the BBC point estimates 

produced are satisfactorily close to the reference values; moreover, ANNs are sufficiently precise 

since the BBC 95% CIs are quite narrow around the reference values. 

Finally, notice that the computational cost associated to the use of bootstrapped ANNs is much 

lower than that required by the use of the original T-H code: actually, the computational times 

associated to both analyses have been of 2.12 h and 92 h, respectively, on a Pentium 4 CPU 

3.00GHz. 

6 Conclusions 

The assessment of the reliability of T-H passive systems is a crucial issue to be resolved for their 

extensive use in future nuclear power plants. The reliance of T-H passive systems on inherent 

physical principles makes their reliability evaluation quite difficult to accomplish, if compared to 

classical system reliability analysis, due to the lack of data which makes current knowledge of 

passive system operation somewhat poor, thus introducing large uncertainties in the analysis. These 

uncertainties are both of aleatory and epistemic nature and are mainly due to poor understanding 

and imprecise modelling of the phenomena affecting the T-H performance of the system and of the 

relative physical correlations, environmental and boundary conditions used. 

These issues may in principle be detrimental for the public acceptance of future reactor designs, 

which conversely are expected to offer an overall, guaranteed level of safety higher than the one of 

the currently operating nuclear fleet, especially thanks to the adoption of passive systems. 

Thus, there is a strong need for the development and demonstration of consistent methodologies and 

approaches for T-H passive systems reliability assessment. 

 

As a further step forward in this direction, in this paper the computational issues associated with 

assessing the reliability of T-H passive systems have been considered. The copious use of expert 

judgement and subjective assumptions during the assessment process leads to the need of 

propagating the associated uncertainties by simulating several times the system response under 

different working conditions: this can be done by Monte Carlo sampling the uncertainties in the 

system model and parameters, and simulating the corresponding passive system response with a 

mechanistic T-H computer code. However, this approach requires considerable computational 
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efforts. The reason is twofold. First, a large number of Monte Carlo-sampled T-H model 

evaluations must generally be carried out for an accurate estimation of the functional failure 

probability. Since the number of simulations required to obtain a given accuracy depends on the 

magnitude of the failure probability to be estimated, with the computational burden increasing with 

decreasing functional failure probability, this poses a significant challenge for the typically quite 

small (e.g., less than 10-4) probabilities of functional failure of T-H passive safety systems. Second, 

long calculations (several hours) are typically necessary for each run of the detailed, mechanistic T-

H code (one code run is required for each sample of values drawn from the uncertainty 

distributions).  

These computational issues can be tackled in two different ways. From one side, efficient Monte 

Carlo Simulation techniques can be employed to perform robust estimations with a limited number 

of input samples; from the other side, fast-running, surrogate regression models (also called 

response surfaces or meta-models) can be used to replace the long-running T-H model code. 

 

Different approaches have been considered and compared with reference to a case study of 

literature involving the natural convection cooling in a Gas-cooled Fast Reactor (GFR) after a Loss 

of Coolant Accident (LOCA) [Pagani et al., 2005]. 

On the basis of the results obtained in the present and previous works by the authors [Zio and 

Pedroni, 2009a-c and 2010; Pedroni et al., 2010; Zio et al., 2010], the following guidelines and 

recommendations can be drawn: 

• If the interest is only in an accurate and precise estimation of the (typically small) functional 

failure probability of the T-H passive system (modelled by a long-running, nonlinear and 

non-monotonous T-H code), then the following approach is recommended (Section 5.1): 

a. build an Artificial Neural Network (ANN) regression model using a sequential, two-

step training algorithm on a reduced number of examples (e.g., around one hundred) 

of the input/output nonlinear relationships underlying the original system model 

code; 

b. use the ANN model as a fast-running surrogate of the original system model code in 

the determination of the LS important direction; the technique recommended for this 

is that based on the minimization of the variance of the LS failure probability 

estimator by means of Genetic Algorithms: the motivation is that since it relies 

directly on the definition of the optimal LS important direction, it produces more 

accurate and precise failure probability estimates than those provided by the other 

techniques proposed in the literature; 
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c. estimate the functional failure probability of the T-H passive system by means of 

Line Sampling with a small number of samples (e.g., few tens); the accuracy and 

precision of the estimates can be enhanced by combining Line Sampling with Latin 

Hypercube Sampling. 

It is worth remarking once more that the LS technique allows only the calculation of the 

failure probability of the passive system, whereas it does not allow a complete uncertainty 

propagation. 

• If the analyst is interested also in the uncertainty propagation (i.e., determination of the 

PDFs, CDFs, percentiles of the T-H code outputs of interest and so on) and sensitivity 

analysis, two options are recommended: 

1. the SS method offers a feasible means because it generates a large amount of 

conditional (failure) samples by sequential Markov Chain Monte Carlo (MCMC) 

simulations developed in different subsets of the uncertain input space. This allows 

producing the PDFs and CDFs of all the T-H code outputs of interest (e.g., peak 

cladding temperatures, pressures, mass flow rates and so on) in a single simulation 

run. Moreover, the conditional samples distributions in different subsets of the 

uncertain input space can be used to study the sensitivity of the passive system 

performance to the uncertain system input parameters: the informative measure of the 

importance of a given parameter in determining the failure of the system is the 

deviation of its conditional distribution from the unconditional one. 

On the other hand, differently from the LS method, there does not seem to exist any 

indication that it is possible to reduce the number of samples (i.e., the number of T-H 

model code evaluations) to below a few hundreds. Actually, at least one hundred 

samples have to be generated in each subset to produce reliable failure probability 

estimates: thus, if the failure probabilities to be estimated are 10-4 or 10-5 (which is 

often the case for passive safety systems), then an amount of 400 or 500 samples have 

to be generated, respectively. As a consequence, if the T-H model requires many 

hours, or days, to perform a single evaluation, SS is not suitable; on the other hand, if 

the T-H model is sufficiently simple and requires seconds or minutes to run, SS may 

represent the optimal choice. 

2. in those (realistic) cases where the T-H model requires many hours, or days, to 

perform a single evaluation, the use of fast-running surrogate regression models (e.g., 

ANNs, quadratic RSs, …) instead of the long-running original T-H code seems 

mandatory. The following procedure is recommended: 
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a. run the T-H system model code a predetermined, reduced number of times 

(e.g., 50-100) for specified values of the uncertain input variables; 

b. collect the corresponding values of the output of interest; 

c. employ statistical techniques for calibrating/adapting the internal 

parameters/coefficients of the response surface of the regression model in 

order to fit the input/output data generated in the previous steps; 

d. use the empirical regression model built at step c. to estimate the quantities of 

interest: in this paper, the estimation of i) the CDF of the passive system 

performance function, ii) its 95th and 99.9th percentiles and iii) first- and total-

order Sobol sensitivity indices has been illustrated; 

e. use the bootstrap procedure to quantify, in terms of confidence intervals, the 

uncertainties associated to the estimates provided by the empirical regression 

models. 

It is worth pointing out that the selection of a surrogate regression model suitable to 

replace the complex, nonlinear T-H code in the uncertainty propagation process is 

quite a difficult task: actually, such selection is heavily dependent on the particular 

application at hand, so that no general rules are available to this aim. 

In the present paper, ANN regression models have been recommended on the basis 

of i) theoretical considerations about the (mathematically) demonstrated capability of 

ANN regression models of being universal approximants of continuous nonlinear 

functions (e.g., any nonlinear T-H code simulating the system of interest) [Cybenko, 

1989] and ii) the experience of the authors in the use of ANN regression models for 

propagating the uncertainties through T-H model codes simulating passive safety 

systems [Pedroni et al., 2010; Zio et al., 2010]. However, since no detailed and 

systematic comparisons with other types of regression models (except for quadratic 

Response Surfaces [Pedroni et al., 2010]) have been performed by the authors yet, no 

additional proofs of the superiority of ANNs with respect to other regression models 

can be provided at present. Future research will be devoted to address this issue, 

although it is arguably optimistic to think that a general statement in this direction 

can be reached. 

 

Finally, a general remark is in order to drive the reader towards a correct interpretation of the 

numerical results obtained and of the recommendations drawn in the present paper. Actually, one 

may interpret that the failure probabilities and sensitivity indices computed by means of the 
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methodologies described and recommended throughout the paper are the failure probabilities and 

sensitivity indices associated to the “real” T-H passive system under analysis (i.e., those quantities 

that would characterize the behavior of the T-H passive system in its operation during a real 

accidental transient). However, in order for this to be true, the T-H code employed in the analyses 

would need to be flawless and comprehensive of all the relevant failure modes of the real T-H 

passive system, all aleatory uncertainties would need to be modeled perfectly, and all epistemic 

uncertainties would need to be well characterized. This is obviously not so and it seems in order to 

acknowledge that the computational methods described and recommended throughout the paper can 

“only” do as much, driving the T-H code with its limitations (even if very detailed and extremely 

demanding to run). In other words, the paper has addressed the quantification of passive system 

functional reliability “only” from the computational viewpoint, i.e., to the extent that the relevant 

failure modes are captured in the T-H model code being driven, and to the extent that the input 

uncertainty distributions are appropriate. Even after consistency checks are run and statistical 

confidence bounds are established on the results, issues may remain concerning the possibility of 

“extending” the results obtained in the analyses to the “actual” behavior of the “real” T-H passive 

system during an accidental transient, because of the model incomplete representation of reality. 
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FIGURE CAPTION PAGE 

 

 

 

Figure 1. Empirical CDF of the performance function Y(x) of the passive system in [Pagani et al., 

2005]. Solid lines: SS with NT = 1850 samples; dashed lines: LHS with NT = 1850 samples; dot-

dashed lines: reference LHS with NT = 500000 samples 

 

 

 

Figure 2. Empirical CDF of the performance function Y(x) of the passive system in [Pagani et al., 

2005]. Solid lines: NT = 500000 estimations from B= 1000 bootstrapped ANNs built on Ncode = 

Ntrain + Nval + Ntest = 80 + 20 + 10 = 110 input/output examples (i.e., T-H code runs); dashed lines: 

LHS with NT = Ncode = 110 samples (i.e., T-H code runs); dot-dashed lines: reference LHS with NT 

= Ncode = 500000 samples (i.e., T-H code runs) 

 

 

 

Figure 3. Sensitivity analysis by SS. Left: empirical conditional distributions of uncertain input 

parameters x2 and x8 at different conditional levels (histograms) compared to their unconditional 

distributions (solid lines); right: distribution of the system failure probability conditional on the 

values of the individual uncertain input parameters x2 and x8, i.e., P(F|x2) and P(F|x8) 
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TABLES 

 

 

Category Description 
A Physical barriers and static structures (e.g., concrete buildings) 
B Moving working fluid (e.g., cooling by free convection) 
C Moving mechanical parts (e.g., check valves) 
D External signals and stored energy (e.g., scram systems) 

Table 1. Categorization of passive systems [IAEA, 1991] 

 



 40

 

 Categories of uncertainties 

ALEATORY  

Occurrence of accident scenarios 
Failure time of mechanical components 

Variation of geometrical dimensions 
Variation of material properties 

EPISTEMIC  
T-H analysis 

Model (correlations) 
Parameters 

System failure analysis 
Failure criteria 

Failure modes (critical parameters) 

Table 2. Categories of uncertainties associated to nuclear passive systems reliability assessment 
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Functional failure probability (“True” value,  P(F) = 3.541·10-4) 
   Performance indicators (NT = 1850; S = 2000) 

Method Nc,P(F) Nc,add ε  [%] CIw  [%] FOM 
Standard MCS (i) NT = 1850 0 101.681 305.874 1.081·103 

LHS (ii) NT = 1850 0 96.652 305.870 1.222·103 
IS (iii) NT = 1850 110 3.803 18.601 6.159·105 

IS + LHS (iv) NT = 1850 110 3.564 17.970 7.121·105 
SS (v) NT = 1850 0 35.760 183.180 6.414·103 
LS (vi) 3·NT = 5550 110 0.517 2.322 1.329·107 

LS + LHS (vii) 3·NT = 5550 110 0.268 1.102 8.295·107 

Table 3. Values of the performance indicators ε  (8), CIw  (10) and FOM (11) obtained with NT = 

1850 samples by methods i)-vii) in the estimation of the functional failure probability P(F) of the 

passive system in [Pagani et al., 2005] 
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Functional failure probability (“True” value,  P(F) = 3.541·10-4) 
   Performance indicators (Nc,P(F) = 30; S = 2000) 

Method NT Nc,add ε  [%] CIw  [%] FOM 
Standard MCS (i) Nc,P(F) = 30 0 206.150 3.943·103 911.541 

LHS (ii) Nc,P(F) = 30 0 183.080 3.492·103 1.162·103 
IS (iii) Nc,P(F) = 30 110 29.049 139.280 1.474·105 

IS + LHS (iv) Nc,P(F) = 30 110 27.182 134.170 1.679·105 
SS (v) / 0 / / / 
LS (vi) Nc,P(F)/3 = 10 110 7.016 36.278 2.338·106 

LS + LHS (vii) Nc,P(F)/3 = 10 110 4.684 24.154 5.029·106 

Table 4. Values of the performance indicators ε  (8), CIw  (10) and FOM (11) obtained with Nc,P(F) 

= 30 T-H code runs by methods i)-vii) in the estimation of the functional failure probability P(F) of 

the passive system in [Pagani et al., 2005] 
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 Sensitivity analysis using bootstrapped ANNs 
 Si

Y STi
Y 

Parameters Y
BBCj,Ŝ  (“reference”)  BBC-95% CI Y

BBCTj,Ŝ  (“reference”)  BBC-95% CI  

x1 7.6774·10-3 (8.6372·10-3) [4.751·10-4, 8.971·10-3] 0.0113 (0.0121) [9.001·10-3, 0.0195] 
x2 0.7879 (0.7928) [0.7792, 0.8158] 0.8259 (0.8391) [0.8188, 0.8553] 
x3 0.0496 (0.0516) [0.0331, 0.0510] 0.0546 (0.0434) [0.0391, 0.0570] 
x4 3.3248·10-6 (8.4218·10-6) [0, 8.317·10-5] 2.226·10-3 (3.0575·10-3) [3.231·10-4, 4.385·10-3] 
x5 0.0651 (0.0522) [0.0583, 0.0767] 0.0711 (0.0833) [0.0655, 0.0809] 
x6 1.2317·10-4 (6.5814·10-5) [0, 3.718·10-4] 2.2169·10-3 (3.1948·10-3) [3.179·10-4, 4.862·10-3] 
x7 2.4542·10-5 (6.0669·10-5) [0, 4.239·10-4] 2.2013·10-3 (3.0618·10-3) [3.447·10-4, 4.621·10-3] 
x8 0.0527 (0.0522) [0.0500, 0.0677] 0.0827 (0.0832) [0.0718, 0.0955] 
x9 1.5848·10-6 (5.9493·10-6) [0, 8.168·10-5] 2.1968·10-3 (3.0531·10-3) [3.455·10-4, 4.333·10-3] 

Table 5. Bootstrap Bias Corrected (BBC) point estimates Y
BBCjS ,

ˆ  and Y
BBCTjS ,

ˆ , j = 1, 2, …, 9, and 

BBC-95% Confidence Intervals (CIs) of the first- and total-order Sobol sensitivity indices YjS  and 

Y
TjS , j = 1, 2, …, 9, calculated he performance function Y(x) of the model of the T-H passive system 

in [Pagani et al., 2005] 
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