Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach - Institut de Recherche en Génie Civil et Mécanique Accéder directement au contenu
Article Dans Une Revue International Journal of Solids and Structures Année : 2017

Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach

Résumé

The secondary creep behavior of Zircaloy-4 (Zr-4) claddings under simulated Loss-Of-Coolant Accident (LOCA) conditions was investigated. A coupled experimental / numerical approach is developed to determine the steady-state creep constitutive law's parameters. The test matrix targets thermal mechanical conditions for which several creep mechanisms are expected to take place (phase transition zone of Zr-4). Ballooning tests were performed on tubular specimens. A heterogeneous thermal mechanical loading was applied to the specimen. The resulting thermal and kinematics fields were measured using full-field optical measurements. Then a Finite Element model was updated to determine a constitutive Norton creep law fitting the kinematic fields measured by way of digital image correlation (DIC). The following methodology enables a significant reduction in the number of tests used for the mapping of creep mechanisms depending on stress and temperature conditions. The results of nine experiments covering stresses from 7 to 45 MPa and temperatures varying from 745 to 850 °C are detailed. In the α-phase domain, the transition from low Norton exponents (∼ 1) to higher ones (∼ 4-5) is observed at a von Mises stress of 26 MPa. The activation energies are consistent in the α-phase domain. For modeling purposes, several tests (T < 810 °C) were then correlated. Three constitutive laws, depending on the stress and creep-rate levels, were determined. Norton exponent and activation energy consistent with the superplasticity observed by Garde et al. were identified in the early stage of the two-phase domain.
Fichier principal
Vignette du fichier
CTMBI.pdf (801.83 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01544673 , version 1 (02-10-2017)
hal-01544673 , version 2 (13-07-2022)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

Damien Campello, Nicolas Tardif, Marwa Moula, Marie-Christine Baietto, Michel Coret, et al.. Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach. International Journal of Solids and Structures, 2017, 115-116, pp.190-199. ⟨10.1016/j.ijsolstr.2017.03.016⟩. ⟨hal-01544673v1⟩
173 Consultations
509 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More