Experiences in multiyear combined state-parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter. - Algorithmes Parallèles et Optimisation Accéder directement au contenu
Article Dans Une Revue Journal of Marine Systems Année : 2015

Experiences in multiyear combined state-parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter.

Résumé

A sequence of one-year combined state–parameter estimation experiments has been conducted in a North Atlantic and Arctic Ocean configuration of the coupled physical–biogeochemical model HYCOM-NORWECOM over the period 2007–2010. The aim is to evaluate the ability of an ensemble-based data assimilation method to calibrate ecosystem model parameters in a pre-operational setting, namely the production of the MyOcean pilot reanalysis of the Arctic biology. For that purpose, four biological parameters (two phyto- and two zooplankton mortality rates) are estimated by assimilating weekly data such as, satellite-derived Sea Surface Temperature, along-track Sea Level Anomalies, ice concentrations and chlorophyll-a concentrations with an Ensemble Kalman Filter. The set of optimized parameters locally exhibits seasonal variations suggesting that time-dependent parameters should be used in ocean ecosystem models. A clustering analysis of the optimized parameters is performed in order to identify consistent ecosystem regions. In the north part of the domain, where the ecosystem model is the most reliable, most of them can be associated with Longhurst provinces and new provinces emerge in the Arctic Ocean. However, the clusters do not coincide anymore with the Longhurst provinces in the Tropics due to large model errors. Regarding the ecosystem state variables, the assimilation of satellite-derived chlorophyll concentration leads to significant reduction of the RMS errors in the observed variables during the first year, i.e. 2008, compared to a free run simulation. However, local filter divergences of the parameter component occur in 2009 and result in an increase in the RMS error at the time of the spring bloom.
Fichier principal
Vignette du fichier
simon_15387.pdf (2.5 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02960624 , version 1 (10-01-2022)

Identifiants

Citer

Ehouarn Simon, Annette Samuelsen, Laurent Bertino, Sandrine Mouysset. Experiences in multiyear combined state-parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter.. Journal of Marine Systems, 2015, 152, pp.1-17. ⟨10.1016/j.jmarsys.2015.07.004⟩. ⟨hal-02960624⟩
62 Consultations
38 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More