Quantum Monte Carlo methods for electronic structure calculations : application to hydrogen at extreme conditions - Maison de la Simulation Accéder directement au contenu
Thèse Année : 2020

Quantum Monte Carlo methods for electronic structure calculations : application to hydrogen at extreme conditions

Méthodes de Monte Carlo quantique pour le calcul des structures électroniques : application à l'hydrogène dans des conditions extrêmes

Vitaly Gorelov

Résumé

The hydrogen metallization problem posed almost 80 years ago, was named as the third open question in physics of the XXI century. Indeed, due to its lightness and reactivity, experimental information on high pressure hydrogen is limited and extremely difficult to obtain. Therefore, the development of accurate methods to guide experiments is essential. In this thesis, we focus on studying the electronic structure, including excited state phenomena, using quantum Monte Carlo (QMC) techniques. In particular, we develop a new method of computing energy gaps accompanied by an accurate treatment of the finite simulation cell error. We formally relate finite size error to the dielectric constant of the material. Before studying hydrogen, the new method is tested on crystalline silicon and carbon diamond, systems for which experimental information on the gap is available. Although finite-size corrected gap values for carbon and silicon are larger than the experimental ones, our results demonstrate that the bias due to the finite size supercell can be corrected for, so precise values in the thermodynamic limit can be obtained for small supercells without need for numerical extrapolation. As hydrogen is a very light material, the nuclear quantum effects are important. An accurate capturing of nuclear effects can be done within the Coupled Electron Ion Monte Carlo (CEIMC) method, a QMC-based first-principles simulation method. We use the results of CEIMC to discuss the thermal renormalization of electronic properties. We introduce a formal way of treating the electronic gap and band structure at a finite temperature within the adiabatic approximation and discuss the approximations that have to be made. We propose as well a novel way of renormalizing the optical properties at low temperature, which will be an improvement upon the commonly used semiclassical approximation. Finally, we apply all the methodological development of this thesis to study the metallization of solid and liquid hydrogen. We find that for ideal crystalline molecular hydrogen the QMC gap is in agreement with previous GW calculations. Treating nuclear zero point effects cause a large reduction in the gap (2 eV). Determining the crystalline structure of solid hydrogen is still an open problem. Depending on the structure, the fundamental indirect gap closes between 380 and 530 GPa for ideal crystals and 330–380 GPa for quantum crystals, which depends less on the crystalline symmetry. Beyond this pressure, the system enters into a bad metal phase where the density of states at the Fermi level increases with pressure up to 450–500 GPa when the direct gap closes. Our work partially supports the interpretation of recent experiments in high pressure hydrogen. However, the scenario where solid hydrogen metallization is accompanied by the structural change, for example, a molecular dissociation, can not be disproved. We also explore the possibility to use a multideterminant representation of excited states to model neutral excitations and compute the conductivity via the Kubo formula. We applied this methodology to ideal crystalline hydrogen and limited to the variational Monte Carlo level of the theory. For liquid hydrogen, the main finding is that the gap closure is continuous and coincides with the molecular dissociation transition. We were able to benchmark density functional theory (DFT) functionals based on the QMC density of states. When using the QMC renormalized Kohn-Sham eigenvalues to compute optical properties within the Kubo-Greenwood theory, we found that previously calculated theoretical optical absorption has a shift towards lower energies.
Le problème de la métallisation de l'hydrogène, posé il y a près de 80 ans, a été désigné comme la troisième question ouverte en physique du XXIe siècle. En effet, en raison de sa légèreté et de sa réactivité, les informations expérimentales sur l'hydrogène à haute pression sont limitées et extrêmement difficiles à obtenir. Il est donc essentiel de mettre au point des méthodes précises pour guider les expériences. Dans cette thèse, nous nous concentrons sur l'étude de la structure électronique, y compris les phénomènes d'état excité, en utilisant les techniques de Monte Carlo quantique (QMC). En particulier, nous développons une nouvelle méthode de calcul pour le gap accompagnée d'un traitement précis de l'erreur induit par la taille finie de la cellule de simulation. Nous établissons un lien formel entre l'erreur de la taille finie et la constante diélectrique du matériau. Avant d'étudier l'hydrogène, la nouvelle méthode est testée sur du silicium cristallin et du carbone de diamant, pour lesquels des informations expérimentales sur l'écart sont disponibles. Nos résultats montrent que le biais dû à la supercellule de taille finie peut être corrigé, de sorte que des valeurs précises dans la limite thermodynamique peuvent être obtenues pour les petites supercellules sans avoir besoin d'une extrapolation numérique. Comme l'hydrogène est un matériau très léger, les effets quantiques nucléaires sont importants. Une description précise des effets nucléaires peut être réalisée par la méthode de Monte Carlo à ions et électrons couplés (CEIMC), une méthode de simulation des premiers principes basée sur le QMC. Nous utilisons les résultats de la méthode CEIMC pour discuter les effets quantiques et thermiques des nuclei sur des propriétés électroniques. Nous introduisons une méthode formelle de traitement du gap électronique et de la structure des bandes à température finie dans l'approximation adiabatique et discutons des approximations qui doivent être faites. Nous proposons également une nouvelle méthode pour calculer des propriétés optiques à basse température, qui constituera une amélioration par rapport à l'approximation semi-classique couramment utilisée. Enfin, nous appliquons tout le développement méthodologique de cette thèse pour étudier la métallisation de l'hydrogène solide et liquide. Nous constatons que pour l'hydrogène moléculaire dans sa structure cristalline parfaite, le gap QMC est en accord avec les calculs précédents de GW. Le traitement des effets quantiques nucléaires entraîne une forte réduction du gap (2 eV). Selon la structure, le gap indirect fondamental se ferme entre 380 et 530 GPa pour les cristaux idéaux et 330-380 GPa pour les cristaux quantiques, ce qui dépend moins de la symétrie cristalline. Au-delà de cette pression, le système entre dans une phase de mauvais métal où la densité des états au niveau de Fermi augmente avec la pression jusqu'à 450-500 GPa lorsque l'écart direct se ferme. Notre travail soutient en partie l'interprétation des récentes expériences sur l'hydrogène à haute pression. Nous explorons également la possibilité d'utiliser une représentation multidéterminante des états excités pour modéliser les excitations neutres et calculer la conductivité via la formule de Kubo. Nous avons appliqué cette méthodologie à l'hydrogène cristallin idéal et limité au niveau de Monte Carlo variationnel de la théorie. Pour l'hydrogène liquide, la principale conclusion est que la fermeture du gap est continue et coïncide avec la transition de dissociation moléculaire. Nous avons été en mesure d'étalonner les fonctions de la théorie fonctionnelle de la densité (DFT) en nous basant sur la densité QMC des états. En utilisant les valeurs propres des calculs Kohn-Sham corrigé par QMC pour calculer les propriétés optiques dans le cadre de la théorie de Kubo-Greenwood , nous avons constaté que l'absorption optique théorique calculée précédemment s'est déplacée vers des énergies plus faibles.
Fichier principal
Vignette du fichier
97108_GORELOV_2020_archivage.pdf (4.97 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03045954 , version 1 (08-12-2020)

Identifiants

  • HAL Id : tel-03045954 , version 1

Citer

Vitaly Gorelov. Quantum Monte Carlo methods for electronic structure calculations : application to hydrogen at extreme conditions. Materials Science [cond-mat.mtrl-sci]. Université Paris-Saclay, 2020. English. ⟨NNT : 2020UPASF002⟩. ⟨tel-03045954⟩
208 Consultations
542 Téléchargements

Partager

Gmail Facebook X LinkedIn More