The MINC proximity function for fractured reservoirs flow modeling with non-uniform block distribution - Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Accéder directement au contenu
Article Dans Une Revue Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles Année : 2021

The MINC proximity function for fractured reservoirs flow modeling with non-uniform block distribution

Nicolas Farah
  • Fonction : Auteur correspondant
  • PersonId : 1093261

Connectez-vous pour contacter l'auteur
Ali Ghadboun
  • Fonction : Auteur

Résumé

Reservoir simulation is a powerful technique to predict the amount of produced hydrocarbon. After a solid representation of the natural fracture geometry, an accurate simulation model and a physical reservoir model that account for different flow regimes should be developed. Many models based on dual-continuum approaches presented in the literature rely on the Pseudo-Steady-State (PSS) assumption to model the inter-porosity flow. Due to the low permeability in such reservoirs, the transient period could reach several years. Thus, the PSS assumption becomes unjustified. The numerical solution adopted by the Multiple INteracting Continua (MINC) method was able to simulate the transient effects previously overlooked by dual-continuum approaches. However, its accuracy drops with increasing fracture network complexity. A special treatment of the MINC method, i.e., the MINC Proximity Function (MINC–PF) was introduced to address the latter problem. And yet, the MINC–PF suffers a limitation that arises from the existence of several grid-blocks within a studied cell. In this work, this limitation is discussed and two possible solutions (transmissibility recalculation/adjusting the Proximity Function by accounting for nearby fractures) are put forward. Both proposed methods have demonstrated their applicability and effectiveness once compared to a reference solution.
Fichier principal
Vignette du fichier
ogst200037.pdf (1.31 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03165769 , version 1 (10-03-2021)

Identifiants

Citer

Nicolas Farah, Ali Ghadboun. The MINC proximity function for fractured reservoirs flow modeling with non-uniform block distribution. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 2021, 76, pp.20. ⟨10.2516/ogst/2020099⟩. ⟨hal-03165769⟩

Collections

OGST
26 Consultations
43 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More