Bienvenue dans la Collection HAL du Laboratoire de Mathématiques Blaise Pascal (LMBP - UMR 6620).

Le laboratoire de mathématiques Blaise Pascal (LMBP) est un centre de recherche publique en mathématiques. C'est une unité mixte de recherche de l’université Clermont Auvergne et du CNRS.
La politique scientifique en mathématiques du site clermontois est définie au sein du LMBP dans le cadre de la stratégie nationale du CNRS (via l’institut national des sciences mathématiques et de leurs interactions) et de la politique globale de site. Le laboratoire a pour mission la production de nouveau savoir en mathématiques. Il participe au dynamisme mathématique international. L’interaction avec l’environnement social, économique et culturel s’ajoute à cette mission principale.
La richesse principale du LMBP, qui lui permet d’atteindre l’objectif de production d’une recherche de haut niveau, est l’ensemble de ses chercheurs et enseignants-chercheurs. Le laboratoire accueille 60 chercheurs et enseignants-chercheurs permanents et une vingtaine de chercheurs non permanents.

Ceux-ci sont répartis en quatre équipes :

- Équations aux dérivées partielles et analyse numérique, dirigée par Arnaud Münch ;

- Géométrie, algèbre, algèbre d’opérateurs, dirigée par Julien Bichon ;

- Probabilités, analyse et statistiques, dirigée par Frédéric Bayart ;

- Théorie des nombres, dirigée par Éric Gaudron.

Les thèmes principaux de l’équipe équations aux dérivées partielles et analyse numérique sont la modélisation et la simulation numérique en mécanique des fluides, la contrôlabilité et les problèmes inverse, les équations de la cinétique et les problèmes hyperboliques, l’homogénéisation et l’analyse asymptotique.
Les thèmes de l’équipe géométrie, algèbre, algèbre d’opérateurs peuvent être regroupés en trois grands axes : algèbre et théorie des représentations, géométrie non-commutative et algèbres d’opérateurs, géométrie et topologie en petite dimension.
Les analystes de l’équipe probabilités, analyse et statistiques s’intéressent à l’analyse fonctionnelle, harmonique et multifractale. Les probabilistes étudient le calcul de Malliavin, les systèmes de particules, les processus de Markov, les équations aux dérivées partielles stochastiques, les grandes et moyennes déviations et les marches aléatoires perturbées.
Enfin, les statisticiens étudient la géométrie stochastique et l’inférence géométrique, les algorithmes statistiques du traitement du signal, les séries temporelles, la théorie statistique des champs aléatoires, les statistiques bayésiennes et la statistique des processus.
Les thèmes de l’équipe théorie des nombres peuvent être regroupés en deux grands axes : formes modulaires et géométrie diophantienne, analyse ultramétrique.

Le laboratoire édite une revue de recherche à comité de lecture international : les annales mathématiques Blaise Pascal. Ce journal publie des articles de recherche en mathématiques depuis 1962.

Le laboratoire organise tous les ans depuis 1971 une école d’été en probabilités à Saint-Flour. Cette école, la plus ancienne de la discipline, poursuit trois buts : présenter dans trois cours de haut niveau une synthèse des recherches effectuées dans un domaines des probabilités ou des statistiques ; permettre aux participants de présenter leurs travaux ; faciliter les rencontres entre jeunes probabilistes.

Les membres du laboratoire contribuent de façon essentielle aux formations en mathématiques de l'université Clermont Auvergne, organisées notamment au sein de l’UFR de mathématiques mais aussi à Polytech Clermont-Ferrand.

Rechercher dans la collection


Derniers dépôts


Consultation et citation

La propriété intellectuelle des documents déposés reste entièrement celle des auteurs. Les utilisateurs de HAL sont donc soumis aux règles du bon usage habituelles, dont le respect des travaux originaux et l'interdiction du pillage intellectuel.
Les documents peuvent être exploités à des fins d'enseignement et de recherche ; les utilisateurs s'engagent en revanche à indiquer la référence complète du document, indiquée sur la notice HAL de celui-ci.

 

Mentions légales

Les archives ouvertes de l'Université Clermont Auvergne ont été réalisées avec le concours du Centre pour la Communication Scientifique Directe, de l'Université Clermont Auvergne, et de la bibliothèque numérique de la Bibliothèque Université Clermont Auvergne.

         Directeur : Julien BICHON

Gestionnaire d'unité : Valerie SOURLIER

Coordonnées :

Campus Universitaire des Cézeaux
TSA 60026 - CS 60026
3, Place Vasarely
63178 AUBIERE
+ 33 4 73 40 70 50

Site web : http://math.univ-bpclermont.fr/

Documents avec texte intégral

477


Références bibliographiques

415


Politique des éditeurs

 
     

Consulter la politique des éditeurs également sur

répartition par type de document


Nuage de mots-clés

Ergodicity Groupes quantiques Noncommutative geometry Fusible Bifurcating Markov chains Large deviations Finite volume method Géométrie d'Arakelov et applications diophantiennes Global weak solutions Diffusion equations Heat transfer Index theory K-theory Elliptic curves Asymmetric zero-range process Styles Plasma Lie groupoids Arakelov Geometry and diophantine applications Boltzmann equation Hopf algebra Gestion Bivariant K-theory Hochschild cohomology Hausdorff dimension Uniqueness Géométrie non commutative Groupoids Cauchy problem Fourier coefficients Limit theorems Numerical approximation Hopf algebras Grandes déviations Moderate deviation principle $C0$-semigroups Corona problem Arc électrique Graph Magnetic fluid Algèbre de Hopf Wasserstein distance Self-similar solution SOM Finite volume scheme Unstructured mesh Consistency Arc root Navier-Stokes equations Porous media Hypocoercivity Convection-diffusion equations Deviation inequalities Site disorder Arc Bayesian estimators Fractional Brownian motion Null controllability Conservation laws Finite element methods P-adic analytic functions Durbin-Watson statistic Maximum likelihood estimator Cathode Phase transition Fokker-Planck equation Existence Distribution of values Quantum groups Hitting times Essential spectrum Espaces adéliques rigides Logarithmic Sobolev inequality Finite volume schemes MUSCL method Finite volume Limiting distribution Geometric inference Poincaré inequality Incompressible flows Logarithmic Sobolev inequalities Hydrodynamic limit Moyenne tension Ballistic annihilation Lyapunov condition Geodesic distance Dirichlet series P-adic meromorphic functions Drift-diffusion system Asymptotic analysis Lyapunov functions Functional calculus Grenoble Change-point Immersed boundary method Eem2017 Coupling Cellular aging Limiting likelihood ratio process Markov process

 

Besoin d'aide ?

Consultez ou téléchargez nos guides :

Guide Pratique // Premiers pas dans HAL
Guide Pratique // Mieux comprendre l'Open Access et HAL

Pour toute information et aide au dépôt des publications dans HAL Clermont Auvergne, ou pour toute demande de formation, contactez nous :

Jessica LEYRIT
Administratrice HAL UCA - Bibliothèque Numérique
jessica.leyrit@uca.fr
04 73 40 55 44

Anne LESOBRE
Correspondante HAL Sciences - BU des Cézeaux
anne.lesobre@uca.fr
04 73 40 78 83

 

logo BCU