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MICROWAVE IMAGING BY ELASTIC DEFORMATION

HABIB AMMARI*, YVES CAPDEBOSCQT, FREDERIC DE GOURNAY?¥, ANNA
ROZANOVA-PIERRATS, AND FAOUZI TRIKIY

Abstract. In this paper, we show that using microwave measurements at different frequencies
and ultrasound localized perturbations to create local changes in the medium it is possible to extend
the method developed by Ammari et al. in [3] to problems in the form

V- (aVu) +k?qu=0 in Q,
u=¢ on 0L,

and to reconstruct reliably both the real-valued functions a and g from the internal energies a|Vu|?
and qlul?.

Key words. hybrid imaging, expansion methods, microwave imaging, elastic perturbation,
resolution enhancement, explicit inversion formula, optimal control

AMS subject classifications. 31B20, 35B37, 35L05

1. Introduction. The aim of this paper is to develop new mathematical tools
and inversion methods to address emerging modalities which are of great current
interest in the biomedical imaging community and pose challenging mathematical
and numerical problems. We want to extend the hybrid approach for conductivity
imaging developed in [3] to the microwave regime.

Emerging imaging modalities are based on a multi-wave concept. Different phys-
ical types of waves are combined into one tomographic process to alleviate deficien-
cies of each separate type of waves, while combining their strengths. Multi-wave
systems are capable of high-resolution and high-contrast imaging [1]. A few partic-
ular examples of emerging modalities are of great current interest in the biomedical
imaging community and will be investigated in detail: magnetic resonance electri-
cal impedance tomography (MREIT) [24, 29], [28], magnetic resonance elastogra-
phy (MRE) [7], impedance-acoustic tomography [21], photo-acoustic [33, 25, 4] and
acousto-optic imaging [14], magneto-acoustic imaging [6], and vibro-acoustography
[19].

One way to combine waves is through controlled perturbations. By non intrusive
methods, controlled perturbations inside a domain of interest, e.g., a human body,
can be created. As first shown in [3], this allows one to reconstruct the unperturbed
medium very accurately by using a standard medical imaging technique, which in the
absence of these controlled perturbations, provides very poor resolution.

In electrical impedance tomography (EIT), it is well known that the reconstruc-
tion of the conductivity from boundary measurements is a very ill-conditioned prob-
lem. This drawback has limited its use so far to anomaly detection [10, 11, 26]. In
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the recent work by Ammari et al. [3], it was shown that combining these mea-
surements with simultaneous localized ultrasonic perturbations allows to recover the
conductivity with good resolution. In fact, we change the EIT problem by the prob-
lem of reconstructing the conductivity distribution from the internal electrical energy.
The purpose of this paper is to show that such an approach can be generalized suc-
cessfully to the microwave regime, where the conductivity equation is replaced by a
Helmholtz equation and the problem is to reconstruct both the permittivity and the
permeability of the medium from internal electromagnetic energies. Recently, mi-
crowave imaging has interested many researchers, specially for breast cancer imaging.
Microwave imaging is anticipated to be sensitive (detect most tumors in the breast)
and specific (specify whether a tumor is malignant or benign). See, for instance,
[17, 20, 23, 27].

The core idea of the hybrid method proposed in this paper is to take microwave
boundary measurements while perturbing the medium with ultrasound waves focal-
ized on regions of small diameter inside the object. Small-volume asymptotic ex-
pansions relate the the difference between the perturbed and unperturbed boundary
measurements to pointwise values of electromagnetic energies at the center of the
perturbed zone. In contrast to the EIT problem, these energies may vanish within
the domain. To overcome this fundamental difficulty, we use many frequencies and
many boundary data. We provide an efficient optimization algorithm to solve the
reconstruction problem with good resolution in a stable way. We show that by using
internal measurements it is possible to significantly overcome the classical Rayleigh
resolution limit in microwave imaging. See, for instance, [1, 15]. As highlighted in [3],
the resolution is of order the size of the focal spot of the ultrasound perturbation.

The paper is organized as follows. In Section 2, we recall the effect of a small
localized change of the permittivity and the permeability on the microwave bound-
ary measurements. Section 3 is devoted to the derivations of exact reconstruction
formulas. Section 4 is to present our reconstruction algorithm which is based on a
minimization approach. The initial guesses are constructed using the exact recon-
struction formulas of Section 3. The paper ends with a short discussion.

2. Expansion formulas. Let © be a smooth bounded domain in R?. We define
the Banach spaces WP(Q),1 < p < +oo0, by

Whr(©Q) = {u € L'(Q), Vu € L'(Q)},

where Vu is interpreted as a distribution, and LP(£2) is defined in the usual way. The
case p = 2 is special, since the space W12(Q) is a Hilbert space under the scalar

product
(u,v):/uv+/Vu-Vv.
Q Q

It is also known that the trace operator u — u|spq is a bounded linear surjective
operator from W2(Q) into W#(92), where ¢ € W%(9Q) if and only if ¢ € L?(99Q)
2 2

and

() — e(y)?
/aQ /39 T ey @ doly) <oo.

Let a € CY(Q) and ¢ € C°(Q) be two scalar real-valued functions. We also
assume that a and g are such that 0 < ¢y < a,q < Cy. For ¢ € Wi’2(8§2), let
2
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u [k, ] € WH2(Q) be such that

{ V- (aVulk,¢]) + E*qu[k, o] =0 in Q, (2.1)

u=¢ on .

Here k is the angular frequency and a and ¢ are the electromagnetic parameters. In
the transverse magnetic case, Maxwell’s equations can be reduced to (2.1) with u
being the electric field, ¢ the electric permittivity and a the inverse of the magnetic
permeability. In this paper, we consider the general case where a is non constant.
But all the results and the methods of the paper remain valid in the constant case.
The well-posedness of problem (2.1) requires that k? must not be an eigenvalue of the
problem

(2.2)

~V - (aVu) = k*qu  in Q,
u=0 on 9.

It is well known that this problem admits a countable number of eigenvalues with no
accumulation point and that each eigenvalue has a finite multiplicity. We will assume
that k& does not correspond to any eigenvalue of (2.2).

The generalization of the imaging method introduced in [3] is the following. A
frequency k and a source field pattern ¢ being fixed, we measure the field u [k, ¢],
solution of (2.1) on Of).

Assume now that ultrasonic waves are focalized around a point z € €2, creating a
local change in the physical parameters of the medium. Suppose that this deformation
affects a and ¢ linearly with respect to the amplitude of the ultrasonic signal. Such
an assumption is reasonable if the amplitude is not too large. Thus, when the electric
potential is measured while the ultrasonic perturbation is enforced, the equation for
the electric field is

V- (auVu,) + k%qou, =0 in Q,
Uy = @ on 08,

with

a, = a+1y(aa—a),
w = q+lo(qra—q),

where « is the amplitude of the ultrasonic perturbation and 1, is the indicator function
of the small zone w where the perturbation is focalized.

The analysis of the change of the Dirichlet-to-Neumann map as a result of elec-
tromagnetic perturbation of small volume is now classical, see [8, 9, 12, 32]. The
signature of the perturbations on boundary measurements can be measured by the
change of energy on the boundary, namely

/ 9 (o] — ulks )gdo = M(22E) ) (aay (=) — a(2)Vulk, ] (2) - Vu k] (2)
o0 8V a(z)
Rl (aqi(2) — q(2) (ulk, @] (2))> + o(jw]),  (23)

where 0/0v denotes the normal derivative on 052, z is the center of w, and M is the
polarization tensor associated with w and the contrast aaj(z)/a(z). Assuming the
perturbed region w to be a disk, the polarization tensor is given by

M(aal(z) W) = [l 2a(z)

a(z) aar(z) + a(z) L2,
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where I is the 2 x 2 identity matrix [9]. Therefore, for a localized perturbation focused
at a point z, we read the following data (rescaled by the volume |w|)

ay(z)

Yax) @ (z)
D(a) = 2a|Vu [k, ] <z>2%{(z%)+1+k2q<z>|u[k,¢1 AP -1 24

The parameters (a;/a)(z) and (¢1/q)(z) are unknown, but the amplitude « is
known. By linear algebra, one can prove from (2.4) that if |Vu [k, ¢] (2)| > |w]
and |u [k, o] (z)| > |w| and the data D, is known for 4 distinct values of «, chosen
independently of a and ¢, then, one can recover the electromagnetic energies

E [k, 90] (z) = a(z)|Vu [k, 90] (z)|27

and

elk, o] (2) = q(2)|ulk, ¢] (2)]*.

Since [24], internal energies have been used to provide efficient imaging procedures,
see [3, 6, 5, 14, 21, 28].

At this point, one can respectively substitute a and g by E [k, ¢] /|Vu [k, ¢] |* and
e[k, @] /|ulk, ] |? to arrive at the nonlinear partial differential equation

. E[kvsp} U 2 e[kvsp} u — in
V(i g el R e <0 me

u=¢@ on 0

(2.5)

Based on the nonlinear direct formulation (2.5), an iterative scheme similar to the
one introduced in [2] can be derived. However, as noticed in [16], an optimal control
approach is more efficient for reconstructing the parameters than the nonlinear based
direct formulation (2.5), specially when the data is available only on a subset of the
background medium (2.

3. Exact reconstruction formulas. In this section, we give explicit formulas
for reconstructing a and q. Unfortunately, these formulas involve derivatives of the
data and then can only be used to construct a good initial guess.

We first note that in contrast to the conductivity case (when k = 0), the solution
u; may vanish within the domain and the same for its gradient. Measurements where
u; or its gradient nearly vanish are not significant, since measurement errors become
dominant. It is therefore sensible to use the measurements in areas of confidence,
that is, where they are sufficiently large. We will call such an area D. For a given
focalization, two parameters are available to the practitioner. Both the source field
pattern ¢ and the frequency k can be changed. Changing either parameter modifies
the zero level-set of E [k, ] or e[k, ¢]. Varying the focalization point, we are then
able to recover this localized internal data everywhere inside the domain D.

We need the following definition.

Definition 3.1. A set of N > 2 pair of parameters

N
(ki, 0i)i<i<n € ((Oa o0) X W%LQ (59)) )

defines a proper set of measurements M(D,«a,3) for D C Q if there exist two
positive constants o > 0 and B > 0 such that
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(i) For all z € D,

N
1<) elkinwl (2) < 6
i=1

(ii) For all z € D,

N
1< Elki, i (2) < By
=1

(iii) For every z € D there exist i,j (which may depend on z) such that
|det (Vu [ki, ¢i] (2), Vu [k, 95] (2))] = e,

where det denotes the determinant.
A proper set of measurements M(D,«, 3) is a complete set of measurements if
additionally, N > 3, e[k;, ;] € W1>°(D) and
(iv) For every z € D there exist i, j,1 (which may depend on z) such that

ot [ Vulkis@il (2) | Vulks, o5 (2) | Vu ki, o] (2) o3/
‘dt< ulki, i) (2) | ulky, 5] (2) | ulki, o] (2) >‘Z v

The first two requirements (i) and (ii) are necessary, for if they are not satisfied,
data cannot be recovered at each point. The constant 1 is arbitrary, and is not a
constraint, as it is always possible to increase the amplitude of the source field patterns
©; by a multiplicative constant. The constraint (iii) implies that there are at least
two independent measurements for the gradient term at each point. The constraint
(iv) implies that there are at least three pairwise independent measurements. Note
that we do not require that the same solution u [k;, ;] satisfies both (i) and (ii). This
makes the constraint on data to be a proper set of measurements quite mild. In
any case, there always exist proper sets of measurements. Using advanced results on
the so-called geometric optic solutions [30, 13], one can show that when N = 2, the
much more stringent requirement that all three conditions are satisfied by the a single
(complex) pair of data is satisfied for some carefully selected . See, for instance, [31].

We use the notation that if M (resp. V) is a N X N matrix (resp. N x 1 vector)
valued function,

N N
(M3 =" MZ, VM3 = [VM;2, V3 =Y V2 and [VV3 =) |V
ij

ij i=1 i=1

The reconstruction problem then becomes:
Problem. Assume that N > 2, and that

N
(Kis pi)1<i<n € ((0, 00) X W;Q (8(2)) ,

is a M(D, o, ) proper set of measurements for D C 2. Suppose the
matrix-valued functions e and E are given by

Eij = a(2)Vulki, i) - Vulk;, ;]
and
eij = q(2)ulki, @il - u Ky, o5].
Find a and ¢ in D.



6 H. AMMARI ET AL.

Remark 3.2. Note that using (2.3) and (2.4) the ’polarized’ data E;; and e;; for
i # j is available without additional measurements, thanks to the bilinear structure of
the asymptotic formula (2.3). In fact, we have

o walhg] = ulk o = M ("5 ) 0 () - a(:) Vo] () - Vlk vl

aq OV
+h2|wl(aq1(2) = q(2))ulk, @] (2)ulk, ¥](2) + o(|w]).

The following results hold. They will be used to construct an initial guess for a
and q.
Proposition 3.3. Assume that N > 2, and that

N
(ki 0i)i<i<n € ((07 o0) X W%LQ (89)) )

is a M(D, «, 8) proper set of measurements for D C Q. Let Py be the projection in
RY on the unit vector U given by

_ vkl cpi<i<n

Then Py is given in terms of the data by

(Pv)ij = %’

where tr denotes the trace. Furthermore, Py € W1°°(D) and satisfies

1 s qtr(F—PyE)
—|VPylo = -————"—"= 3.1
9 |V U|2 a tr(e) ) ( )
which allows to determine q/a, as
ot
tr(E— PyE) > tr(E) @ > 0. (3.2)

Moreover, the following proposition gives an explicit formula to determine ¢ up
to a multiplicative constant.
Proposition 3.4. Under the same assumptions as those in Proposition 3.3, suppose
that tr(e) € WH°°(D). We have

Oz,q _ Oy, tr(e)

— 2\ k=1,2 3.3
q tr(e) ks ) &y ( )
where \1 and X2 satisfy
tT’(PUE)
A2 2= $us) 4
1 + 2 a tr(e) ’ (3 )

and are determined by the linear system

M( i; >B (3.5)



MICROWAVE IMAGING BY ELASTIC DEFORMATION 7

with
0, U 0,,U-0,,U q EU - 821U
M — 1 1 2 B = — . .
( 0,0 0,0 Jouf ) " P au\ Buany ) B9

For all N > 2, we have by assumption that

a?

@a

and thus, rank(M) > 1. If N = 2, then rank(M) = 1. If N > 3 and M(D,«a,f3) is a
complete set of measurements, then

VU, >

@
tr(e)®’

which shows the invertibility of the linear system (3.5).

Before proving Propositions 3.3 and 3.4, we shall make a few remarks.
Remark 3.5. Note that in all cases, (3.4) and (3.5) leave at most 2 choices Vq(z)/q
for each z. So provided for example that Vq is continuous, and that Vq and V2q have
no common roots, Vq is globally determined in D as being one of the two possibilities.
If q is known by other means on a subset of D, then q is also completely determined
in the case of a proper (and not complete) set of measurements.
Remark 3.6. It is also worth noticing that (3.1) and (3.3) do not depend on the
number N > 3 of measurements. From the numerical point of view, adding more
measurements even though they are of lower signal-to-noise ratio (SNR) would in-
crease the overall quality of the reconstruction.
Remark 3.7. Finally, we shall note that the exact reconstruction formulas given in
Propositions 3.3 and 3.4 are not valid when a and/or q are complex.
Proof of Proposition 3.3. Let T := e;;/tr (e). Since we have an M(D, c, ) proper set
of measurements, tr (e) > 1 in D, thus T;; is well defined. Furthermore,

| det(M)] > o

N
Z u [knv Qpnf
n=1

thus T' = Py, as announced. Differentiating this formula, we obtain

N
> U
i=1

2

1
5 VPl = VUL UL + = VU3, (3.7)

since Zf\;l U? = 1. We compute that

N 2 N N
(Zu[kmﬂﬁn]z) |VU|§ = (Zu[kmﬂﬁn]z) Z |Vu [kpvﬂppHQ
p=1

n=1 n=1
N N
- Z Z YV [kn, on] - Vulkp, pl u [kn, n] ulkp, @],
p=1n=1

which can be written also

g VU = (tr (B) — tr (PrE)),

1
tr (e)
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and we have obtained (3.1). Now note that E can be written

E (E) D) L QPI 27?’ 2PU
= tr +
n1 +n2 ! nl +n2 2 ’

where we wrote

(U ):M and ng := i(a ulk; -])Qfork:12
k)io- e 5 k - vt T iy Pi ) &

Note that ny, U # 0. Therefore, it is immediate that
tr (PyE) =tr(E) L%(U U )2—&-”7%((] U )2 (3.8)
vErT n? +n3 ! n? +n3 2l ) '

Note that U 1, U are well defined. Indeed, Since we have M(D, o, B) a proper set of
measurements, there exists ¢, j such that

az1u[kjagoj] axzu[kmcpl] -

so in particular

(3.9)

Writing that Uy = (Uy - U2)Us + CU% + D, with Uy having only two non zero
components, —dz,u [kj, ;] in position ¢ and d,,u [k;, ;] in position j, and D being
the remainder, orthogonal to both U s and U’JQ-, we obtain

2

«
1> U1 -Us)?+ ——
= ( )1 72) + n%n%

)

or in other words,

a? (n% —|—n%)2 2

2 [0

> 3.2
Bnin;

Decomposing U in the orthogonal basis of RY starting by Ui1,Us—(U1-Ug)U4, and
using the fact that U is of unit norm, we obtain

1—(Uy-Us)* > (U-U >+ (U-Usz)?=2(U;y-Us) (U-Uy)(U-Uy),

and therefore,

2 2
(U~U’1)2+(U-U,2)2§1+|U71~U,2|§1+1/1—422§2(1—;2>. (3.10)

Combining (3.8), (3.9) and (3.10), and using the trivial bound |U-U | < 1, we obtain

052 n2 n2 n2 n2
tr (PrE) < tr(B) ( (1- %5 ) min | 5, 52 >+max< o >)
o) <ta(e) (1G5 )i (%o g W+
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and hence (3.2) follows.
Proof of Proposition 3.4. Differentiating the formula for tr (), we obtain

2, b 2,
Ontrle) Oud oy = p_q
tr (e) q

where, using the same notation as in Proposition 3.3,

N
1 ng
Ak = km n a’l‘ km n :7U'U,7
k QZU[ ¥ ] ku[ ¥ ] no k

Z?{il u [k’ia <)01] n=1

with the additional notation that

Differentiating U, we find

PN
we compute that
2 n2 2
EU =tr (E k(U -U)Uy = MU .
r ( );n%Jrn%( ko U)Uk GZTLWO KUk
=1 k=1
Testing (3.12) against U, we obtain
2 2
EU-U = aanno)\kuk cu = aZn(Q))\z,
k=1 k=1

which is (3.4). Alternatively, testing (3.12) against d,,U gives, using (3.11),

2
EU - 8aclU = aznknl)\kU,k . (IN - PU) Uyl
k=1

2
= (IZ nknl)\k (IN - PU) U7k . (IN — PU) UJ
k=1
2
= aan)\kaku -0, U
k=1

2
a
= —tr(e A0z, U - 0, U,
q ()Zk k L

k=1

(3.11)

(3.12)
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which is the desired 2 x 2 system given by (3.5). Note that since |U|2 = 1, we have
0, U-U = 0. Therefore, if U has only two components, d,, U and 0,,U are necessarily
colinear, and system (3.5) is degenerate.

However, it is never a zero matrix. Indeed,

1
VU3 = §|VPU‘37

and therefore thanks to Proposition 3.3,

a2

|VU|2 > 62.

Suppose now that M (D, «, ) is a complete set of measurements. To fix ideas,
let us say that

Og k1, 01]  Opyulkr, 1] wlki, o1]
D :=|det | Oy ,ulka, 2] Or,ulka,p2] ulks,po] > a?/?,
Oy u k3, 03] Onyulks, @3] ulks, 3]
that is, 2 = 1,57 = 2,1 = 3. Note that
D = ‘det(U’ﬂ’Lh U’gng, U’no,€4, ey eN)\ s

where e, is the i-th canonical basis element of RY. Consequently,

D = noning |det(U1,U2,U, eq,...,en)|,
= Nonin2 |det(U,1 - PUU71, U72 — PUU727 U,eq,..., eN)‘ ,
= ’n‘g |det(8a:1 Ua 8I2U7 U7 €4y 0,y 6]\])‘ )

= nd |det(8,,U — M%U, 00, U, U ey, en)|,
|82?2U|2
Oy, U - 0., U

=ng |0, U — 2——7220,,U| [0,,U|,.

0 02, U13 5 2
Now, writing
0y, U - 05, U 2
amlU - 17228I2U |812U|§ = ‘8I1U|§ |aﬁ?2U‘§ - ‘811(] : 8I2IJ|2 )

|83?2U|2 2

we obtain that
|det M|n§ > a?,

or in other words,

det M > o3

tr(e)®’

as desired. O
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4. Optimal control algorithm. In this section, we discuss how the scalar co-
efficients a and ¢ can be recovered in practice from a complete set of measurements e
and F in € (see Definition 3.1), provided that a and ¢ are known on a neighborhood
of Q. It is natural to think of a minimization approach, namely,

N ) )
minimise J(7, ¢) 1= Z/Q ((’Y|V¢i|2)% - En'%> + ((0%2)% - 61‘1‘%) 5
i=1
where v); is the solution of

V- (YV¢5) + kfc; =0 in Q,
¥, = ¢; on 0L,

with ;2 =1,..., N, being given boundary source field patterns.

Propositions 3.3 and 3.4 show that, under an appropriate regularity assumption, J
admits a unique global minimizer a and ¢q. To minimize the quadratic misfit functional
J, a gradient descent algorithm seems appropriate [18, 22]. It was proved to be
very successful when the frequency k& = 0. In [16], the zero frequency case, k = 0,
was considered for both the two- and three-dimensional case. The authors showed
that the minimization procedure was very robust: without a good initial guess, the
minimization procedure converges to the correct solution.

The situation is dramatically different when k is not close to zero. In order
to insure that problem (4.1) is well-posed, k; should not be an eigenvalue of the
corresponding homogeneous Dirichlet problem. Enforcing that constraint at every
step of the minimization procedure, where v and ¢ are changing, is extremely difficult,
and possibly futile. In fact, if the procedure starts from an arbitrary + and c, it is
unlikely that k; would be located in the same spectral gap for that problem and for the
target one. Numerical experiments show that if we start with a randomly chosen initial
guess, the iterative procedure quickly stalls near a point where k; is an eigenvalue for
(4.1). We therefore need to use the explicit formulas given by Propositions 3.3 and
3.4 to build a good initial guess of the solution.

Our resolution method contains therefore two parts. First, we compute ¢ and

co following Propositions 3.3 and 3.4. Then we perform a gradient descent on J to
improve this initial guess.
Remark 4.1. The reader may wonder why we choose to take L? norm of the square
root of the error with respect to the square root of the data. The reason is that the
data is known to be in L*(Q) so the quadratic difference is in L*(S2). Indeed, if one
takes an objective functional that resembles

ol 2
Jre) =Y / (Va2 — Eia)? + (c? — e31)?
i=179

then, one should ensure that ; belongs to the space WH4(Q), which is not the natural
physical space to work in. On the other hand, even though it requires the natural
reqularity in v;, the objective functional

N
J(re)=3 /Q W Vail? = Bi| + |ew? — e,
=1

cannot be used since it is not differentiable as soon as a|Vi;|? = Ey; at some point in

Q.
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4.1. Computation of the initial guess. Proposition 3.3 gives an explicit for-
mula for ¢/a, namely

qtr(E—PyE)
P \mTrUE)
|V U|2 tr (e) ’
where
e
Pr=—S".
v tr (e)

The implementation is straightforward. Proposition 3.4 gives a formula for the gra-
dient of ¢ in terms of A, U, e and E. To compute U, we note that it is the range
(pointwise in ) of Py, which can thus be obtained by either a power method, or sim-
ply, by finding a non-zero column of Py. Since |U| = 1, at least one of the coefficients
of U is larger than 1/v/N, so a simple sorting argument provides U. Then, In(q) is
approximated by v, the solution of

—Av =V - (Vin(tr(e)) = A), v=In(g) on 99,
where A = (A, \2)7, T denoting the transpose, is calculated as A = M !B, with M
and B given by (3.6).

4.2. Computation of the derivative of J. We use standard differentiation of
the solution of a linear operator with respect to a change of coefficient. Changing v
and ¢ by v+ 7/, ¢+ ¢ changes v; by 1; + ¢; where 1] verifies, at the first order, the
equation given by an implicit function theorem

V- (yV) + ke = =V - (Y Vi) — kicy; i Q, (4.2)
Y, =0 on IQ.

Performing usual derivation, J is changed by J + J’ where .J/, the Fréchet derivative
of .J, verifies

N
, L ViV
J —ZZ:;/Q(W|V%| F)(\[W%HQW [V )
+ [ (el = Ve Sl + 2y,

Denoting the errors
E;; €ii
e(y)=1—/———= and ¢(c)=1—, /| ——,
\ al Va2 clil?

N
J=> /Q &NV [Vil* + 29V V) + ei(c) (€ |9il* + 2ciis).
=1

we have

To remove the terms involving 1)}, which are implicitly given by 4’ and ¢/, we use the
“adjoint method”. See, for instance, [22]. The “adjoint method” amounts to compute,
for each i = 1,..., N, p; as the unique solution in W12(Q) of

V- (yVpi) + kZcp; —V - (ei(MYV) + €i(e)v;  in Q,
Di 0 on 99.
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An integration by parts together with the system in p; simplifies the computation of
J:

N
T=3 /Q (MY [Vil* + () [vil* — 29V Vp; + 20k ip;.
=1

Using the equation (4.2), defining ] and performing an integration by parts, one
finds

N N
J'= /97/ (Z (V)| Veil® + 2V¢Npi> +c (Z ei(c)|[vi]® — ngz/]ipi) )

i=1 i=1
The gradient descent algorithm amounts take as descent direction ' and ¢’ corre-
sponding to

N
Y ==Y (@MYl + 2V Vi)

N
¢ ==Y (eil) sl — 2k2ipi)

For numerical reasons, we prefer to perform the change of variables v = €%, ¢ = e,
in order to ensure positivity. In this case, the descent direction is given by

N
o' = =23 () Ve[ + 2V Vpy)
=1
L
W= e (K ei(0)|wil® — 2k i)
=1

4.3. Numerical experiments. As a test case, we assume that the domain is a
disk of unit radius, where the coeflicients a and ¢ are given by

2.0 in B, 2.0 in B,
1.2 in C, 1.8 in C,
a= . q= .
25 in E, 1.2 in E,
1.0 otherwise, 1.0 otherwise.

The set B is the rectangle with diagonal (0.0,0.4) — (0.3,0.5). The set C is the
interior area delimited by the curve ¢ — (0.3 + p(t) cos(t), —0.2 + p(t) sin(¢)), where
100p(t) = 20 + 3sin(5t) — 2sin(15t) + sin(25¢). The set E is the ellipse of center
(—0.3,0.1), with vertical major axis of length 0.3, and horizontal minor axis of length
0.2. The coefficients a and g are shown in Figure 4.1. We take N = 9 measurements
given by the different combinations of

ke 173; 7 and ¢($7y) € (xvy) — T, ($7y) =Y, (l',y) = 1))

In a first experiment, we assume that the data is collected in a manner compatible
with the inclusions. Namely, we use a mesh adapted to the inclusion and assume that
the value at each center of mass of E and e is given. In Figure 4.3, we present on the
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[Reference ]

Fic. 4.1. The reference parameters.

102

E[—— Errorfora |
[ |~ Errorforq

T N A A R P Y BRI R
0 10 20 30 40 50 60 0 10 20 30 40 50 60

10" | | —— Objective function

FiG. 4.2. Convergence history of the objective functional (left) and the L?(Q) errors of the
parameters (right).

left 79 and ¢y used as initial guess, computed using Propositions 3.3 and 3.4. On the
right, we present the final parameters as given by the gradient algorithm. In order to
perform a thorough analysis, we also plot the relative error, that is,

I~ — 1] and |-L — 1|
a q

for the initial and final parameters. The result is shown in Figure 4.4, where each
levelset corresponds to an increase of the relative error of %10_2.

In a second experiment, we assume that the data is collected on a coarser mesh,
unrelated to the location of the inclusions. The reconstruction is thus done a different
mesh from the one used for synthesizing the data. The mesh used here is an uniform
mesh of the disk with approximatively 1600 nodes and 3000 elements. The data is
computed on the refined mesh and then projected onto the coarse mesh. Figure 4.5
shows the projection of the distributions of the reference parameters, which gives an
idea of the best possible approximation. Note that the algorithm has better con-
vergence properties with respect to ¢ than with respect to a. This is because the
perturbation of ¢ has a lower order effect on the solution of the direct problem than
the perturbation of a. Perturbing a can dramatically affect the solution of the direct
problem [8].
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Iteration 0: a Iteration 60: a

Iteration 0: q Iteration 60: q

F1a. 4.3. On top, the initial (left) and final (right) a. Below, the initial (left) and final (right) q.

5. Conclusion. In this paper, we generalized the EIT by elastic perturbation
to the microwave regime. We provided an efficient optimization algorithm to solve
the reconstruction problem in two dimensions with good resolution and in a stable
way. Explicit inversion formulas were used to reconstruct a good initial guess for the
parameter distributions. It would be very interesting to analytically investigate the
robustness, with respect to incomplete data (internal energies measured only on a
part of the background domain), measurement and medium noises of the proposed
algorithm. The extension of the reconstruction procedure to the full Maxwell equa-
tions in three dimensions is also challenging. Another important problem is to take
into account the effects of anisotropy and dissipation (nonzero imaginary part) in the
material parameters. We would also like to investigate the hybrid approach proposed
in [34], where a mechanical excitation induces displacement within the object while
microwave signals are measured on its boundary, since it is quite related to the model
proposed here.
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Iteration 60: error for a

Iteration O: error for g Iteration 60: error for q
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F1G. 4.4. On top, the initial (left) and final (right) relative errors on a. Below, the initial (left)
and final (right) relative error on q.

FiG. 4.5. Projection of the distributions of the reference parameters on the coarse mesh.
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