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Abstract We discuss, in this paper, a flux-free method for
the computation of strict upper bounds of the energy norm of
the error in a Finite Element (FE) computation. The bounds
are strict in the sense that they refer to the difference be-
tween the displacement computed on the FE mesh and the
exact displacement, solution of the continuous equations,
rather than to the difference between the displacements com-
puted on two FE meshes, one coarse and one refined. This
method is based on the resolution of a series of local prob-
lems on patches of elements and does not require the resolu-
tion of a previous problem of flux equilibration, as happens
with other methods. The paper concentrates more specifi-
cally on linear solid mechanics issues, and on the assessment
of the energy norm of the error, seen as a necessary tool for
the estimation of the error in arbitrary quantities of interest
(linear functional outputs). Applications in both 2D and 3D
are presented.

Keywords Verification · A posteriori error estimation ·
Error bounds · Residual-based estimators · Flux-free error
estimator

1 Introduction

In the past few decades, research and industry in the field of
mechanics have relied increasingly on computational tools.
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The models and the resolution methods have grown increas-
ingly complex and their careful assessment has become un-
avoidable. In particular, the error arising from the resolu-
tion of equations defined on a continuum by the finite ele-
ment (FE) method has to be estimated and controlled (the
so-called ”verification” [1]). Hence, this paper describes a
technique for the estimation of bounds on the energy norm
of that error, in the particular setting of linear solid mechan-
ics.

This technique is an a posteriori error estimation method,
which means that it uses the output of the FE computa-
tion to assess its accuracy. Three groups of techniques ex-
ist within that general class (see [2] for a more detailed re-
view, and [3,4] for recent journal special issues on the sub-
ject): one based on the so-called constitutive relation error,
by Ladevève and co-workers (see for example [5]); another
based on the comparison of the discontinuous stress field
computed by the FE method and a regularized version, fol-
lowing the leading work of Zienkiewicz and Zhu [6]; and,
finally, a large family of methods, generically called im-
plicit residual methods, which are based on the (approx-
imate) resolution of a residual error equation on a series
of small local problems with appropriate boundary condi-
tions (see for example [7–10], and comparisons between ap-
proaches in [11–13]). Among these methods, we distinguish
between the hybrid-flux methods (also called equilibrated
residual methods), where the local problems are element-
based, and the flux-free techniques [7,13–18], where the
subdomains are patches of elements. The advantage of the
latter is that the boundary conditions on the local problems
are trivial, and that they do not require any flux equilibration.
In this paper, we will concentrate on this type of technique,
and we will follow more particularly the approach described
in [13,19].

In most of these subdomain-based methods, although
the local error estimation problems are posed on smaller
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Fig. 1 Model of the problem on the domain Ω , with internal loads f,
boundary forces g on Γ N and blocked on Γ D (left); and corresponding
finite element triangulation TH with two stars in darker tones, Ωi and
Ω j , corresponding to nodes xi and x j , respectively (right)

geometrical spaces, the functional spaces involved are still
infinite-dimensional. The exact error is therefore usually es-
timated as the solution of an alternate FE problem, posed
on a much larger space than the original FE computation.
Hence, the bounds computed are given with respect to a ”re-
fined” solution and are valid only asymptotically. However,
it is much more interesting, from an engineering point of
view, to provide strict bounds, that is to say with respect
to the exact error. A dual formulation was proposed to at-
tain that goal in the context of hybrid-flux residual estima-
tors [20,21], and was later extended to the flux-free error es-
timators in the case of transient convection-reaction-diffusion
problems [22,23].

This paper describes the extension of these concepts for
the derivation of strict bounds of the energy norm of the er-
ror in the case of linear solid mechanics problems in the flux-
free methodology. Further, specific aspects are discussed and
two strategies are investigated for the enhancement of the
bounds. Finally, the accuracy of the estimated bounds is shown
on several examples in both 2D and 3D problems.

2 Model problem and main notations

2.1 Model problem

We consider an elastic polygonal domain Ω ⊂ Rd (see fig-
ure 1). The boundary, Γ = ∂Ω , is divided into two comple-
mentary disjoint parts Γ D (Γ D 6= /0) and Γ N, where essen-
tial and Neumann boundary conditions are imposed, respec-
tively. The boundary value problem to be solved reads: find
u : Ω → Rd , such that

Divxσ(u)+ f = 0 in Ω

σ(u) ·n = g on Γ N

u = 0 on Γ D

, (1)

where the internal force per unit volume f ∈ [H −1(Ω)]d

and the Neumann boundary tractions g∈ [H −1/2(Γ N)]d are
given, H α(A ) is the standard α-Sobolev space over A ,
and n is the outgoing normal vector. ε(v) and σ(v) are the
strain and stress tensors related to a displacement field v.

We define V = {v ∈ [H 1(Ω)]d ,v|Γ D = 0}, the space of
admissible fields, and the weak formulation of problem (1)
states: find u ∈ V , such that

aΩ (u,v) = `(v), ∀v ∈ V , (2)

where aΩ is given by aΩ (w,v) =
∫

Ω
σ(w) : ε(v) dΩ and

` by `(v) =
∫

Ω
f ·v dΩ +

∫
Γ N g ·v|Γ N dΓ . The bilinear form

aΩ (·, ·) induces the definition of the energy norm by ‖v‖2
Ω
=

aΩ (v,v).
The Lax-Milgram theorem ensures that equation (2) has

a unique solution in V , that we will denote uex. However this
solution is usually not available analytically, and we may use
the FE method to compute approximations of it.

2.2 Finite Element solution and residual error equation

We therefore introduce a triangulation, TH , of Ω , whose ele-
ments and vertices are denoted, respectively, {Ti}1≤i≤Ne and
{xi}1≤i≤Nv , with Ne and Nv the number of elements and ver-
tices. We assume that the triangulation is such that Γ D and
Γ N consist of entire faces (edges in 2D) of the elements of
TH . For reasons that will appear in the sequel (more specif-
ically for the solvability of some local problems during the
computation of the error bounds, see section 4.2), the FE
approximation space over this triangulation is taken to be
quadratic, that is V H = {v ∈ V ,v|Tk

∈ [P2(Tk)]
d ,1 ≤ k ≤

Ne}, where Pn(Tk), n ∈ N, is the space of polynomials of
order at most n over Tk.

The approximation of uex in V H is then denoted uH , and
defined as the unique solution of

aΩ (uH ,v) = `(v), ∀v ∈ V H . (3)

The goal of error estimation techniques is to obtain informa-
tion on the error e = uex−uH ∈ V . By linearity, this error is
the solution of

aΩ (e,v) = `(v)−aΩ (uH ,v) =: R(v), ∀v ∈ V , (4)

where the residual R is such that R(v) = 0,∀v ∈ V H .
However, the resolution of equation (4) is of the same

complexity as that of equation (2), because e and v are still
both in the same infinite-dimensional space V . Therefore,
we do not try to solve the problem exactly for e, but rather
look for bounds on the energy norm of e, namely on ‖uex−
uH‖2

Ω
= ‖e‖2

Ω
= aΩ (e,e) = R(e). Such bounds give a global

idea of the error resulting from the approximation of uex by
uH . Another approach, more interesting from an engineer-
ing point of view, would consist in looking for bounds on
the error in certain quantities of interest, |I (uex)−I (uH)|,
but it can be brought back, using a proper error represen-
tation [24–29], to that of estimating bounds for the energy
norm (for the original problem and a dual one) so that it will
not be discussed any further here.
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For problems for which the exact solution is known, one
can evaluate the ability of a particular method to provide
accurate bounds of the energy norm by using a gloabl ef-
fectivity index η = ‖ê‖Ω/‖e‖Ω , or its local equivalent ηk =

‖ê‖Tk/‖e‖Tk . Both should be close to 1 when the method
provides accurate bounds. Further, since the estimates that
are discussed in this paper are strict upper bounds of the en-
ergy norm of the exact error, we will always have η > 1, but
no equivalent property for the local ηk.

2.3 Domain decomposition

Due to the discontinuity of the stress σ(uH), the stress σ(e)
is continuous within each element of the mesh and discon-
tinuous over the element interfaces, denoted Γ int. More specif-
ically, that stress is in the functional space

V brok
H (Ω)=

{
σ = {σi j}1≤i, j≤d |σi j ∈H 0(Tk),1≤ k ≤ Ne

}
,

and we define the jump of the traction vector as

Jσ ·nK =

{
σ1 ·n1 , on ∂Ω

σ1 ·n1 +σ2 ·n2 , on Γ int .

where the indices 1 and 2 refer to the elements on each side
of the interface.

Further in the paper, we will decompose the domain Ω

in patches of elements (see figure 1 and 2), called stars,
{Ωi}1≤i≤Nv , and defined by Ωi =

{
∪Tk|xi ∈ Tk

}
. The star

Ωi, centered on xi, is therefore the set of elements in con-
tact with the node xi. It should be noted that each element
is a member of several stars (namely the stars centered on
each of its vertices) so that the patches defined here overlap
one another. These stars appear in the derivation of our error
bounds because they are the support of the linear FE inter-
polation functions {φi(x)}1≤i≤Nv , such that φi(x j) = δi j, and
∑

Nv
i=1 φi(x) = 1, ∀x ∈Ω . Note that Nv denotes the number of

vertices of the mesh, rather than the number of nodes, and
that these numbers are equal only when using a linear FE
method. Note also that the functions φi do not necessarily
coincide with the functions used for the FE interpolation of
uH , but that they are in V H .

The next section describes the dual formulation intro-
duced to ensure the strict upper bound character of the error
estimate, and the following presents the actual computation
of this error bound by the flux-free methodology.

3 Strict bounds for the energy norm of the error

Following [20,21], strict bounds for the energy norm of the
error can be derived by using a dual formulation, so that we
start from the strong form of the error estimation problem
rather than from the weak form (4).

xi
xi

Fig. 2 Examples of stars on a triangular mesh (left) and a quadrilateral
one (right)

3.1 Strong form of the residual error equation

Since the stresses corresponding to the FE solution uH are
possibly discontinuous at the interface between the elements
of the mesh, while those corresponding to uex are continu-
ous, the stresses corresponding to the error field e are pos-
sibly discontinuous. This has to be taken into account and
yields the following strong formulation of the error estima-
tion problem, with jumps in the stresses: find e ∈ V , such
that

Divxσ(e)+(f+Divxσ(uH)) = 0 in Ω

σ(e) ·n = (g−σ(uH) ·n) on Γ N

Jσ(e) ·nK+ Jσ(uH) ·nK = 0 on Γ int

e = 0 on Γ D

.

Extending the definition of g to Γ N ∪ Γ int by setting
g(x ∈ Γ int) = 0, and remembering the extended definition
of the jump operator J·K (section 2.3), one gets the equiva-
lent system of equations:

Divxσ(e)+ fH = 0 in Ω

Jσ(e) ·nK = gH on Γ N∪Γ int

e = 0 on Γ D

,

where fH = f+Divxσ(uH) and gH = g−Jσ(uH) ·nK are the
equivalent loads for the residual error equation.

3.2 Dual formulation of the residual error equation

The dual formulation consists in introducing a new variable
q, representing a stress tensor in Hdiv(Ω)= {q∈L2(Ω),Divxq<
+∞ on Tk,Tk ∈Ω}, and verifying{

Divxq+ fH = 0 in Ω

Jq ·nK = gH on Γ N∪Γ int . (5)

This stress tensor q is said to be statically admissible, and
aims at representing the stress tensor arising from the error,
σ(e), while relaxing the Dirichlet boundary condition e = 0.
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We also define, for any stress tensor field q, the complemen-
tary energy as

πc(q) =
1
2

∫
Ω

q : C−1 : q dΩ .

As stated below, any such statically admissible stress tensor
provides an upper bound for the energy norm of the error.

Theorem 1 Let e ∈ V be a displacement error field, solu-
tion of equation (4), and q ∈Hdiv(Ω) a stress tensor, solu-
tion of the system (5). Then, the latter provides a strict upper
bound for the energy norm of the former as:

‖e‖2
Ω ≤ 2πc(q),

and the equality is reached for q= σ(e).

Proof For any displacement field v ∈ V cancelling on Γ D,
a stress tensor q verifying the strong formulation (5) also
verifies∫

Ω

q : ε(v) = R(v).

As this is the case for the error e solution of (4), it yields∫
Ω

q : ε(e) = R(e) = aΩ (e,e) = ‖e‖2
Ω .

On the other hand, the expansion of the complementary en-
ergy πc(q−σ(e)), which is always positive, and cancels for
q= σ(e), yields

0≤ 2πc(q−σ(e)) = 2πc(q)+‖e‖2
Ω −2

∫
Ω

q : ε(e)dΩ ,

where we used
∫

Ω
σ(e) : C−1 : qdΩ =

∫
Ω
q : C−1 : σ(e)dΩ ,

and C−1 : σ(e) = ε(e). The expected result is obtained by
comparison of the last two equations. ut

This theorem provides a way of computing a strict upper
bound for ‖e‖2

Ω
. However it remains to actually construct a

statically admissible stress tensor verifying the system (5).
In the form written here, the problem seems only slightly
less complex than that of computing directly the exact dis-
placement field uex, because it is posed on the entire domain
Ω . The next section presents the flux-free method, that al-
lows to replace the global problem (5) by a series of local
problems posed on small patches of elements.

4 Computation of strict bounds of the energy norm of
the error using the flux-free methodology

Different flux-free methodologies have been developped over
the years [7,13–18], all sharing the property that they some-
how make use of a set of functions verifying the partition
of unity property to replace the global problem (either sys-
tem (5) or a more classical corresponding primal problem)
by a set of smaller local problems. They differ by the type
of functions and the way in which they are introduced in
the equations, and we will here follow the method described
in [13,19].

4.1 The flux-free methodology

In this method, we use the classical linear FE interpolation
functions {φi}1≤i≤Nv as the set of partition of unity functions
and define the local problems as follows: for all vertices i,
1≤ i≤ Nv, find a second-order stress tensor qi ∈Hdiv(Ωi),
such that

Divxq
i +φi fH = 0 in Ωi

Jqi ·nK = φi gH on Γi

qi ·n = 0 on Γ D∩∂Ωi

, (6)

where Γi is the set of all edges of the star Ωi, both in its
interior and on its boundary, excepted those that might fall
on the Dirichlet boundary Γ D. The homogeneous Neumann
boundary condition on the original Dirichlet boundary is
added in order to ensure equilibrium of the loads on the star.
Note that, using the expanded definitions of fH , gH and J·K,
and seeing that φi cancels on ∂Ωi\(Γ N∪Γ D), the system (6)
can also be written

Divxq
i +φi(f+Divxσ(uH)) = 0 in Ωi

Jqi ·nK =−φiJσ(uH) ·nK on Γi\∂Ωi

qi ·n = φi(g−σ(uH) ·n) on Γ N∩∂Ωi

qi ·n = 0 on ∂Ωi\Γ N

.

This expanded version of the local system to be solved in
each star is here presented to describe more precisely the
different types of boundary conditions that are actually en-
forced. However, for an easier reading, the rest of the paper
will be based on the equations in their reduced form (6).

The flux-free methodology provides an upper bound for
the energy norm of the error by the conjonction of theorem 1
and the following:

Theorem 2 Let {qi}1≤i≤Nv be a family of stress tensors, in
Hdiv(Ωi), where each member verifies the system (6) for a
star Ωi. Defining qi

Ω
, 1≤ i≤ Nv, as

qi
Ω (x) =

{
qi(x) ∀x ∈Ωi

0 ∀x /∈Ωi
,

the stress tensor q̂, constructed as

q̂=
Nv

∑
i=1

qi
Ω ,

is then a statically admissible stress tensor, solution of the
system (5).

Proof For any point x in the interior of an element Tk, by
definition of the qi

Ω
(x), q̂(x) is obtained as the sum of the

qi(x), with an index running only on the vertices of that
element. Hence Divxq̂ = ∑Divxq

i = −∑φi fH = −fH , be-
cause the φi form a partition of unity. Likewise, for x ∈ Γ int,
q̂(x) is the sum of the qi(x), with an index running only on
the vertices of the side (segment in 2D or face in 3D), and
q̂ ·n = ∑qi ·n = ∑φi gH = gH . ut
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Remark 1 The Neumann condition imposed on the Dirich-
let boundary of the original problem means that, besides
verifying the system (5), the stress tensor q̂ will also ver-
ify q̂ · n|Γ D = 0. As q̂ originally aimed at representing the
stresses arising from the error σ(e), it should rather verify
e|Γ D = 0, and possibly σ(e) ·n|Γ D 6= 0. Hence, this condition
is necessary to impose the equilibrium of the local problems,
but is possibly detrimental to the quality of the estimation of
the error stress field. However, we will see, in the applica-
tions, that it does not seem to deteriorate the quality of the
error bounds in a significant manner.

4.2 Solvability of the local problems

Provided that it can be constructed, the family of stress ten-
sors {qi}1≤i≤Nv described above provides a strict bound of
the energy norm of the error. However, the solvability of the
local problems (6) remains to be checked. It is given by the
following:

Theorem 3 Let uH be a FE solution of (3), at least quadratic
in the sense that the FE interpolation space V H contains at
least all element-wise quadratic polynomials over the do-
main Ω :

V H = {v ∈ V ,v|Tk
∈ [P2(Tk)]

d ,1≤ k ≤ Ne}.

If the loads f and g of the FE problem (3) are piecewise
polynomials, of order p f and pg, respectively,

f ∈
{

f∗ ∈ L2(Ω), f∗|Tk
∈
[
Pp f (Tk)

]d
,1≤ k ≤ Ne

}
,

and

g ∈
{

g∗ ∈ L2(∂Ω),g∗|∂Ωk
∈
[
Ppg(∂Ωk)

]d
,1≤ k ≤ Ne

}
,

where ∂Ωk = ∂Ω ∩∂Tk, then, for each star Ωi, 1≤ i≤ Nv,
there exists at least one stress tensor qi, piecewise polyno-
mial, solution of the system (6).

This theorem is similar to the one proved in [21, Ap-
pendix A], but set on stars rather than on elements. Hence,
we will base our proof on the latter, and, before proceeding,
we recall it here, along with two useful lemmas.

Lemma 1 (theorem 1 of [21]) For any given set of forc-
ing functions f|Tk

∈ [Pp f (Tk)]
d and g|Tk

∈ [Ppg(Tk)]
d , equili-

brated in the sense that their equivalent force and moment
cancel, that is to say,∫

Tk

fdΩ +
∫

∂Tk

gdΓ = 0, (7)

and∫
Tk

x× fdΩ +
∫

∂Tk

x×gdΓ = 0, (8)

there exists at least one dual feasible solution qk ∈ {q∗ =
{q∗i j}1≤i, j≤d |σi j ∈ L2(Tk),1≤ k ≤ Ne}, verifying{

Divxqk + f = 0, in Tk

qk ·n = g, on ∂Tk
,

which is piecewise polynomial of degree p, with p≥ pg and
p > p f .

Proof As indicated, this lemma is proved in [21, Appendix
A] and will not be derived here. However, it is important to
note that the proof requires the splitting of the element Tk. A
triangular element is hence split into three, a quadrilateral is
split into four triangles, and a tetrahedron into four tetrahe-
dra, each time by adding a node in the center of the original
element. Also, the proof has formally been performed only
for 2D problems and should be, in a future work, extended
to 3D. ut

The two following lemmas will allow us to use the pre-
vious one to prove theorem 3.

Lemma 2 Let uH be a FE solution of (3), at least quadratic.
Then, for any star Ωi of Ω , 1 ≤ i ≤ Nv, the system of loads
{φifH ,φigH} is self-equilibrated in the sense that the result-
ing force and moment cancel, that is to say:∫

Ωi

φifHdΩ +
∫

Γi

φigHdΓ = 0, (9)

and∫
Ωi

x×φifHdΩ +
∫

Γi

x×φigHdΓ = 0, (10)

Proof We first examine the case of the resulting force. As
the functions φi are linear over each element of the mesh,
and we considered a quadratic FE interpolation space V H ,
any constant vector a would fall in V H , except that it does
not verify the Dirichlet boundary condition on Γ D. Hence,
a modified version of equation (3) is verified for v = φia,
where a term is added to account for the condition on Γ D.
We get, using the fact that the support of φi is Ωi, φi(x /∈
Ωi) = 0,∫

Ωi

σ(uH) : ε(φia) dΩ −
∫

Γ D∩∂Ωi

(σ(uH) ·n,φia)dΓ

=
∫

Ωi

(f,φia)dΩ +
∫

Γ N∩∂Ωi

(g,φia)dΓ

Using the divergence theorem, accounting for the possible
discontinuity of the stresses σ(uH) between the elements,
and observing that the terms on the Dirichlet boundary con-
dition cancel out, we get that∫

Γi

(Jσ(uH) ·nK,φia)dΓ −
∫

Ωi

(Divxσ(uH),φia)dΩ

=
∫

Ωi

(f,φia)dΩ +
∫

Γ N∩∂Ωi

(g,φia)dΓ .
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Fig. 3 Example of a star with the notations used in the proof of
lemma 3

Recalling the definitions of fH and gH (section 3.1), this
equation can be rewritten(∫

Ωi

φifHdΩ ,a
)
+

(∫
Γi

φigHdΓ ,a
)
= 0.

As this is true for any constant vector a, we get the expected
equation for the resulting force. The same reasoning leads
to the equilibration of the moments because, for any con-
stant vector a, the function φia× x would be in V H , be it
for the Dirichlet boundary condition, so that the modified
(quadratic) FE equilibrium gives∫

Γi

(Jσ(uH) ·nK,φia×x)dΓ −
∫

Ωi

(Divxσ(uH),φia×x)dΩ

=
∫

Ωi

(f,φia×x)dΩ +
∫

Γ N∩∂Ωi

(g,φia×x)dΓ .

which leads to the expected result simply by using the rules
of the triple product (a,b× c) = (a×b,c), ∀a,b,c. ut

Lemma 3 Let Ωi = {∪Ni
k=1Tk} be a star, loaded by f∈ [L2(Ωi)]

d

and g∈ [L2(Γi)]
d}, equilibrated in the sense of (9)-(10). Then,

it is possible to construct a distribution of loads on the bound-
ary of each element {g∗k ∈ [L2(∂Tk]

d)}1≤k≤Ni , such that f|Tk
and g∗k be equilibrated, in the sense of (7)-(8), on each ele-
ment, and

Jg∗K = g, on Γi.

Proof The proof follows a rather classical technique, that is
described, for example, in [5, Section 8.3] for solid mechan-
ics problems, or in [2, Section 6.4] for scalar problems. We
recall here the main steps, in the case of one particular in-
terior star, and send the reader to the above references for a
more general proof and details.

We consider an interior star (for which the central node
xi /∈ ∂Ω ) with three elements E1, E2, and E3, exterior sides
Γ1,0, Γ2,0, and Γ3,0, oriented interfaces Γ1,2, Γ2,3, and Γ3,1 (see
figure 3, and loads g1,0, g2,0, g3,0, g1,2, g2,3, g3,1 on the corre-
sponding elements. We look for surface loads g∗1,2, g∗1,3, g∗2,1,
g∗2,3, g∗3,1, g∗3,2, where the first subscript indicates the element
to which the loads refers, and the second the element that the

support interfaces connects to. These loads must verify local
jump conditions:

g∗1,2−g∗2,1 = g1,2

g∗2,3−g∗3,2 = g2,3

g∗3,1−g∗1,3 = g3,1,

(11)

as well as the equilibrium on each element. For example, on
element E1, this leads to∫

Γ1,2

(g∗1,2,a)dΓ +
∫

Γ1,3

(g∗1,3,a)dΓ +
∫

Γ1,0

(g1,0,a)dΓ

+
∫

E1

(f|E1 ,a)dΩ = 0,

for any solid motion movement a. Equivalent equations can
be written for the other two elements, and, using the jump
conditions, this leads to a system of equations in the form
∫

Γ1,2
(g∗1,2,a)dΓ +

∫
Γ3,1

(g∗3,1,a)dΓ = `1(a)∫
Γ1,2

(g∗1,2,a)dΓ +
∫

Γ2,3
(g∗2,3,a)dΓ = `2(a)∫

Γ2,3
(g∗2,3,a)dΓ +

∫
Γ3,1

(g∗3,1,a)dΓ = `3(a)
.

This system allows to compute the value of the moments
(the integrals) on the left hand side. Then, a distribution (for
example linear) is chosen for the value of g∗1,2, g∗2,3, and g∗3,1,
and the last three loads g∗2,1, g∗3,2, and g∗1,3 are derived using
equations (11).

These three lemmas allow to prove theorem 3 very eas-
ily.

Proof (of theorem 3) Indeed, lemma 2 tells us that the loads
on the stars, as defined in system (6), are equilibrated. Hence,
lemma 3 can be used to derive a surface load on the bound-
ary of each element that verifies the conditions required for
the application of lemma 1. The latter gives us the desired
result directly. ut

It should be rightly noted that this theorem does imply
that the flux-free method described here cannot be used to
derive strict upper bounds for solid mechanics problems that
have been solved using linear FE interpolation functions.
The rest of this section now concentrates on implementa-
tion issues, and, in particular, on the choice of one solution
among all the possible ones for each local problem (6).

4.3 Implementation and minimization strategies

We start this section with the derivation of the matrix system
corresponding to the system (6). Since it is under-determined,
we then turn to the description of two possible ways of choos-
ing one among the possible solutions, and finally discuss
several implementation aspects of interest.
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Derivation of the matrix system We first choose the order of
the polynomial used for the representation of the stress ten-
sor, n, and introduce, for each star, the basis pi = {pi

m}1≤m≤N0

of the (element-wise polynomial) stress tensor space {q̃i =

[q j`]1≤ j,`≤d ,q j`|Tk
∈ Pn(Tk),Tk ⊂Ωi}. We then introduce the

vector Q̃i
= [Q̃i

m]1≤m≤N0 of coordinates of a stress tensor in
that basis as

q̃i =
N0

∑
m=1

Q̃i
mp

i
m.

Note that the number N0 of elements in the basis depends
on the number of dimensions d of the physical space, the
degree n chosen for the representation of q̃i, as well as on the
number of elements in the star. For example, for a 2D star of
Ne elements, there are n(n+1)/2 elements in the polynomial
representation and d(d + 1)/2 independant components of
the (symmetric) stress tensor, so that N0 = nd(n+ 1)(d +

1)Ne/4.
We then introduce bases for the divergence space, that

is a vectorial basis with a polynomial order n− 1, and for
the tractions on Γi and Γ D. We denote these bases pi

d−1 =

{pi
d−1,m}1≤m≤N1 , pi

Γ
= {pi

Γ ,m}1≤m≤N2 , and pi
D = {pi

D,m}1≤m≤N3 ,
respectively. Considering the same example as above, we
would have N1 = nd(n−1)Ne/2, N2 = ndNi and N2 = ndND,
with Ni and ND the number of sides in Γi and Γ D, respec-
tively. The matrix enforcing the divergence D = [D j`], and
those for the tractions N1 = [N1

j`] and N2 = [N2
j`] are then

defined as

D j` =−
∫

Ωi

(pi
d−1,m,Divxp

i
`)dΩ , 1≤ j ≤ N1, 1≤ `≤ N0,

N1
j` =−

∫
Γi

(pi
Γ ,m,Jp

i
` ·nK)dΓ , 1≤ j ≤ N2, 1≤ `≤ N0,

and

N2
j` =−

∫
Γi

(pi
D,m,p

i
` ·n)dΓ , 1≤ j ≤ N3, 1≤ `≤ N0.

Finally, we introduce the vectors of coordinates F and G
of φifH and φigH in the bases pi

d−1 and pi
Γ

, respectively. The
system (6) can then be written in the following matrix formD
N1

N2

[Q]=
F

G
0


However, this system is, in general, under determined,

and a decision must be taken as to which of the possible so-
lutions should be selected. We study here two possibilities,
both aiming at minimizing the global complementary energy
(associated with q̂) by minimizing the local complementary
energy (associated with the qi). Indeed, all possible solu-
tions of system (6) provide a strict upper bound for the en-
ergy norm of the error through their complementary energy
(theorem 1), so that the ideal choice, for a given order of the

polynomial describing the qi, would therefore be that which
minimizes the complementary energy πc(q̂= ∑

Nv
i=1 q

i). This
q̂ with the minimum complementary energy is the one that
will provide the sharpest bound.

Minimization without accumulation The first natural pro-
posal is therefore to find the qi as the solution of the fol-
lowing minimization problem:

qi = argmin
q̃i

πc(q̃
i),

under the constraint that the q̃i be solutions of the system (6).
This can be enforced through the use of a lagrangian ap-
proach. In view of the constraints, we therefore introduce
three dual fonctions λ 1, λ 2 and λ 3, and define the lagrangian
of the minimization problem as:

L =
1
2

∫
Ωi

q̃i : C : q̃idΩ −
∫

Ωi

(λ 1,Divxq̃
i +φifH)dΩ

−
∫

Γi

(λ 2,Jq̃i ·nK−φigH)dΓ −
∫

Γ D∩∂Ωi

(λ 3, q̃
i ·n)dΓ .

The matrix equations for the system are then derived by can-
celling the functional derivatives of that lagrangian L , with
respect to q̃i, λ 1, λ 2 and λ 3, and projecting the correspond-
ing equations in appropriate bases.

We therefore introduce the mass matrix M= [M j`]1≤ j`≤N0 ,
as the projection in the basis pi of the complementary energy
operator,

M j` =
1
2

∫
Ωi

pi
j : C : pi

`dΩ , 1≤ j, `≤ N0,

and the vectors L1, L2, and L3 of the coordinates of λ 1, λ 2,
and λ 3 in the bases pi

d−1, pi
Γ

, and pi
D. The matrix system

that will be solved in each star therefore takes the form:


M DT N1T N2T

D
N1 0
N2




Q
L1
L2
L3

=


0
F
G
0

 (12)

Minimization with accumulation However, although the qi

all minimize locally the complementary energy on their star
Ωi, there is no certainty that q̂ = ∑

Nv
i=1 q

i will globally min-
imize the complementary energy on Ω . Hence, we propose
an alternative approach, where all the information that was
already computed is used for the minimization. For the first
stars that are considered, this process is equivalent to the
previous one. However, towards the end of the computa-
tion, when most of the stars have been computed already,
this method will actually provide the solution that, given all
that was already computed, gives the global minimum for
the complementary energy of q̂. Note that this means that
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the order in which the stars are computed will have an im-
pact on the result of the computation. Also, there is no secu-
rity that the results computed in this manner are better than
the ones computed with the previous one. However, we will
see in the examples in the next section, that the order vari-
ability can actually be used to one’s advantage, and that this
technique does indeed provide very good results.

We therefore choose an order for the computation and
number the stars accordingly 1≤ i≤ Nv. When considering
the star Ωi, the local problems on the stars Ω j, 1≤ j < i have
already been solved, and the corresponding q j computed.
We then change the previous minimization problem by the
following one:

qi = argmin
q̃i

πc

(
q̃i +

i−1

∑
j=1

q j

)
, (13)

under the same constraints as earlier. The system (12) is then
modified in the following way:
M DT N1T N2T

D
N1 0
N2




Q
L1
L2
L3

=


−MQ∗

F
G
0


where the vector Q∗ holds the coordinates, in the basis p(Ωi),
of the stress field obtained from the stars that have already
been computed before Ωi.

Elements refinement In the proof of the existence of a stress
tensor verifying the system (6) (proof of theorem 3), each el-
ement has to be splitted such that two sides of the original el-
ement pertain to different elements of the new mesh. Hence
triangles are splitted into three new triangles and quadrilat-
erals into four quadrilaterals, each time by creating a new
node in the interior of the polygon. We chose here to create
the new node at the barycenter of the nodes of the element
considered. Note that this refinement can be performed at
a global level, and once only at the beginning of the com-
putation, since the same element in two different stars has
to be splitted each time in the same manner. Note also that
this refinement operation is computationally inexpensive but
that the cost of the resolution of each local problem (6) rises
because the number of elements in each star is larger.

Order of the polynomials The proof of theorem 3 also in-
dicates that there is a minimal polynomial degree for the
stress tensor required to prove its existence, but any higher
order polynomial is also valid. Limited numerical experi-
ments were performed and seem to indicate that there is, in
most cases, an improvement of the effectivity index when
using higher order polynomials. However, this has a very
important cost because the number of terms in the polyno-
mial basis increases very rapidly with the polynomial order

(in 2D, the second-order basis includes the terms 1, x, y,
x2, xy and y2, while the third-order basis also includes the
terms x3, x2y, xy2 and y3; in 3D, the second-order basis in-
cludes the terms 1, x, y, z, x2, xy, y2, xz, yz and z2, while
the third-order one is twice as large with the terms x3, x2y,
xy2, y3, x2z, xyz, y2z, xz2, yz2, z3). The computational cost
of the resolution of the systems (6) rises then very rapidly
and the improvement of the effectivity index does not seem
to balance the cost. In all the applications shown in the next
section, the mimimum order (quadratic polynomials for the
stresses) is always used.

Parallelization The fact that the local problems are indepen-
dent has two advantages: firstly, the computation can be per-
formed very easily on several computers in parallel, and sec-
ondly the global computational cost increases only linearly
with the number of nodes. Indeed, using the commercial
code Cast3m [30] for the FE computations and a Matlab [31]
implementation for the error estimation (that could probably
be optimized), the tests that we ran indicate that the cost of
the error estimation is equivalent to that of the FE computa-
tion for a few thousand nodes, and becomes lower for larger
computations. Note that when running the error estimation
in parallel, either the previous minimization strategy has to
be limited to the stars that are actually computed on the local
CPU, or some communication between the nodes has to be
implemented.

5 Applications

To illustrate the accuracy of the upper bounds developped
in this paper, we chose three examples of application: a 2D
perforated square plate in plane stress, a 2D gravity dam in
plane strain, and finally a 3D carabiner. All FE computa-
tions are performed using Cast3m [30], and the upper bound
computation, using the flux-free method, is implemented in
Matlab [31].

5.1 2D perforated square plate in plane stress

The first example that will be considered here is that of a
thin square plate with rectangular holes in 2D plane stress.
That plate is loaded on the left and right sides by a unit nor-
mal traction. The problem is therefore symmetric both in the
horizontal and vertical directions so that only a quarter of the
plate is actually modeled, with appropriate boundary condi-
tions (see figure 4). The Young’s modulus and the Poisson’s
ratio of the plate are taken as E = 1 N/m2 and ν = 0.3. Due
to the geometry, the solution of this problem is expected to
show singularities in the corners of the interior hole, and the
numerical errors to be concentrated there. Note that the same
problem was already considered in several papers by various
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g(x)

Fig. 4 Model of a quarter part of the perforated square plate

Fig. 5 Two embedded FE meshes with maps of the exact energy norm
of the error

authors [13,19,21,32,33]. We will study here the values of
the effectivity indices computed on different meshes, inves-
tigate the possibility of using the upper bound of the error
to drive an adaptive process, by looking in particular at the
maps of local effectivity indices, and comment on the differ-
ent optimization strategies discussed in section 4.3.

The first mesh that has been considered for this prob-
lem is the one on the left in figure 5, and is the same as the
one used by some of the authors in the references above.
The exact value of the displacement field for this problem is
not known but can be computed accurately by considering
an ’overkill’ mesh, that is to say an extremely refined mesh.
The displacement field on the crude mesh is then interpo-
lated on the refined one to yield the value of the error and
hence its energy norm, either globally or in each element of
the crude mesh. As an example, the distribution of the en-
ergy norm of the exact error ‖e‖Ω for two different meshes
is presented in figure 5. As expected it shows a very strong
localization of the error around the corners of the hole.

Following the ideas presented in this paper, and first per-
forming independent minimization on each star, the compu-
tation of the upper bound of the energy norm of the error
yields a global effectivity index of η = 1.066 for this first
mesh. As it should be as close as possible to 1, and will
always remain larger because of the upper bound property,
this result is excellent. When using, on the other hand, the
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Fig. 6 Influence of the minimization strategy on the global effectivity
index: histograms of the effectivity indices obtained using the accu-
mulation strategy with random ordering of the stars (light grey shade),
starting with the star in the lowest corner of the hole (grey shade), and
starting with the stars in both corners of the hole (dark grey shade); and
value obtained without accumulation (black dot)

accumulation strategy presented in equation (13), the order
in which the stars are solved becomes important, so that dif-
ferent effectivity indices can be found for the same mesh.
We investigate this effect by computing 10000 times the ef-
fectivity index for the same mesh, but changing randomly
the order in which the stars are solved. The results are plot-
ted (in light grey shade) as a histogram in figure 6. As can
be observed by comparison with the value computed with-
out accumulation (the black dot on the figure), the value of
the effectivity index is almost always lower with the accu-
mulation strategy (about 10 cases out of 10000 yeld higher
effectivity indices, but the values are almost equal to the case
without accumulation and are hidden below the dot in the
figure). Further, we perform two more series of experiments:
on the one hand, 10000 trials with a random ordering, but al-
ways starting by the star with the highest error (the lowest
corner of the hole in the plate, see figure 5), and on the other
hand, 10000 trials with a random ordering, but always start-
ing by the two stars with the highest errors (both corners of
the hole). The results are also plotted on figure 6, and show
that substantial improvements of the effectivity index can be
obtained by performing accumulation starting by the stars
that ultimately participate the most in the computation of the
upper bound 2πc(q̂ = ∑

Nv
i=1 q

i). However, note that this can
be only used when we have a knowledge a priori of the lo-
cation of these stars. This may be the case for problems with
strong singularities, as is the case here, and in the next prob-
lem, but is not true in general. However, in general cases,
the accumulation strategy does seem advisable, because it
always appears to lower the global effectivity index.

We then compute upper bounds of the energy norm of
the error for a series of embedded meshes to study their rate
of convergence. Starting from the mesh on the left of fig-
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Fig. 7 convergence of the relative errors ‖e‖Ω/‖uH‖Ω and
2πc(q̂)/‖uH‖Ω with the number of DOFs for a uniform (dashed-dotted
line and diamonds) and an adaptive mesh refinement (dotted line and
crosses); and upper bounds corresponding to each scheme (solid lines
and circles)

ure 5, each triangle is split into four triangles to yield the
mesh on the right of the same figure. The process is repeated
several times to give a series of embedded meshes with num-
bers of DOFS ranging from around 500 to 100000. Note that
we are considering TRI6 elements in 2D, so that the number
of DOFs is approximately six times that of the number of
stars. For example, for the first mesh, there are 74 stars, 255
nodes, and 510 DOFs. For each of these embedded meshes,
the upper bound, as well as the exact error (by comparison
with an overkill solution), are computed, and both values are
plotted in figure 7 (dash-dotted line and corresponding solid
line). The global effectivity indices for these meshes range
from 1.01 to 1.09, and converge at the same rate as the exact
error.

We finally use the upper bounds to drive an adaptive
process, based on a rationale of equidistribution of the en-
ergy of the error on the mesh. Hence, the elements with
large contribution to the upper bound are split while those
with little contribution are merged. More specifically, start-
ing from a given mesh for which the upper bound has been
computed, a map of desired element size is drawn by in-
creasing the current element size (by a factor of 1.5) where
the local upper bound of the error is small (more specifi-
cally, below 20% of the maximum local upper bound), and
lowering the current element size (by a factor of 2) where
the local upper bound of the error is high (more specifically,
over 80% of the maximum local upper bound). That ele-
ment size map is then fed to a meshing program, EZ4U, to
yield a series of adapted meshes, some of which are shown
in figure 8. The upper bounds and the exact errors (com-
puted using overkill meshes) are plotted in figure 7 and show
the excellent improvement of the convergence rate obtained
with this adaptive process. The effectivity indices for these
adapted meshes range from 1.01 to 1.13.

(a) 610 DOFs, error: 6.89% (b) 4022 DOFs, error: 1.47%

(c) 8754 DOFs, error: 0.78% (d) 15738 DOFs, error: 0.45%

Fig. 8 Sequence of adapted meshes. The errors indicated are the rela-
tive energy norms ‖e‖Ω/‖uH‖Ω and the black and white squares, re-
spectively in meshes (b) and (c), correspond to the zooms in figure 9

For two meshes (figure 8(b) and figure 8(c), respectively),
we plot in figure 9 (left and right sides, respectively) the lo-
cal upper bound maps and compare them with the exact error
distributions. Although the upper bound property is only en-
sured at the global level, we observe that the distribution of
upper bounds is very close to that of the exact error. This is
further shown by plotting the histogram of the local effectiv-
ity indices for all elements. It shows a strong clustering, in
both cases, a little below 1. However, note that the four main
elements, that participate to 75% of the total energy norm of
the error (all located around the corners of the hole), all have
local effectivity indices above 1 (black dots in the figure).
All in all, it seems that the method, at least for this problem
with strong singularities, predicts local error slightly below
the exact value, while balancing this at the global level by
slightly overestimating it for the elements close to the sin-
gularity.

5.2 2D gravity dam in plane strain

We then turn to a more elaborate problem, of a 2D grav-
ity dam in plane strain, described in figure 10. The model,
already used in [6], consists of a dam, with a hole represent-
ing a gallery, and loaded both by gravity and a hydrostatic
pressure where the water would stand. That last load is ap-
proximated by a triangular horizontal load on the (almost)
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(c) Local effectivity indices

Fig. 9 Distribution maps of (a) the upper bound, computed using the
flux-free method, and (b) the exact energy norm of the error, computed
using an ’overkill’ mesh; and (c) histograms of the local effectivity in-
dices. The indices of the four elements with the largest error, summing
up to 75% of the total error, are indicated by black dots on the his-
tograms. The upper left figures are zooms in the black box on the mesh
in figure 8(b), and the upper right figures are zooms on the white box
on the mesh in figure 8(c)

vertical face of the dam (starting at 0 on top of the face, and
rising with depth) and a vertical load on the soil standing be-
neath the reservoir. The boundary conditions below the soil
are split into rolling conditions on the left and right sides,
and homogeneous Dirichlet condition on the bottom. This
model for the boundary conditions therefore allows some
degree of settlement of the dam. The Young’s modulus and
Poisson ratio are taken as E = 10 GPa and ν = 0.2. The total
length of the model is L = 28 m, for a height of H = 16 m
from the highest point to the lowest.

The main differences with the previous problem are the
complexity of the geometry (several singularity points and a
curved boundary), the complexity of the loads (besides the
constant surface load as before, a triangular surface load and
a volume load), and finally the strong Dirichlet condition on
the bottom. We particularly expect the Dirichlet condition

f(x)

(water)

g(x)
(soil)

(air)

Fig. 10 Model of the gravity dam

on such a large part of the boundary to hinder the quality of
our upper bounds since the statically admissible stress tensor
field that we estimate will verify a homogeneous Neumann
condition on this surface. Further, note that, theoretically
speaking, the upper bound property is only valid for piece-
wise linear boundaries, which is not the case here. However,
the overkill meshes will be computed here as refinements
of the current one, so that our bounds will indeed be upper
bounds with respect to the overkill solutions.

We study here the same issues as in the previous ex-
ample: quality of the global effectivity index depending on
the optimization strategy, rate of convergence of the upper
bound in comparison with that of the exact error, and, finally,
quality of the local effectivity indices and adaptive process
driving.

We first plot a histogram of the effectivity indices com-
puted for 10000 trials (the mesh is that of figure 13(a)), using
the accumulation strategy and a random ordering of the stars
(see figure 11, light grey bars) and compare it with the value
obtained without accumulation (black dot on the same fig-
ure). As before, the values obtained with accumulation are
almost always better than that obtained without accumula-
tion, and when not, they are so close that are hidden on the
graph below the black dot. It is interesting to see here that
the histogram is bi-modal. By computing, for each star, the
correlation (not shown here) between their ranking in the
resolution and the value of the effectivity index obtained, it
is observed that that correlation is extremely high (in nega-
tive) for the star in the left corner of the interior gallery and
extremely high (in positive) for one just next to it. Further,
these values are much higher than for any other star. Hence,
it can be concluded that getting an effectivity index in one
side or the other of the histogram is mainly driven by the
respective ranks of these two stars: taking the star in the cor-
ner before means a better effectivity index. We also plot the
histogram obtained for 10000 trials on the same mesh, with
accumulation and a random ordering of the stars, but always
starting with the star in the left corner of the gallery. As be-
fore, the effectivity index is then much better in all trials.
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Fig. 11 Influence of the minimization strategy on the global effectivity
index: histograms of the effectivity indices obtained using the accumu-
lation strategy with random ordering of the stars (light grey shade),
and starting with the stars at the geometrical discontinuities (dark grey
shade); and value obtained without accumulation (black dot)
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Fig. 12 convergence of the energy norm of the error with the number
of DOFs for a uniform refinement of the mesh (dashed line and crosses)
and an adaptive refinement (solid line and circles)

We then study the rate of convergence of the upper bound
for a series of homogeneously refined meshes. The first mesh
is that of figure 13(a). Contrarily to the previous example,
we do not consider here embedded meshes. Indeed, the ge-
ometry of the curved boundary is not well interpolated on
that first mesh, and this issue would stick for all meshes
derived from it. We therefore used again the meshing pro-
gram EZ4U, that time asking for a constant element size
throughout the mesh. The global effectivity indices obtained
for the six meshes considered range from η = 1.15 to η =

1.35. These values are higher than in the previous example,
mainly due to the large Dirichlet boundary condition in the
bottom. A preliminary correlation study between the rank of
the stars on that boundary and the value of the effectivity in-
dex seems to indicate the presence of some kind of pattern
between the rank of the stars at the singularity points on the
Dirichlet boundary condition and their neighbors. However,
a more complete study would be required to draw more def-

inite conclusions and possible strategies for improvement of
the effectivity index. In any case, the values obtained here
are already highly satisfactory.

Finally, we consider the possibility to drive an adaptive
refinement process using the upper bound. With the same
meshing software as before, and providing local size maps
as indicated for the previous example (with an additional
smoothing step that is not relevant here), we obtain a series
of refined meshes, some of which are plotted in figure 13.
The global effectivity indices for these meshes also range
from η = 1.15 to η = 1.35. Note that, in the last mesh, there
seems to be unrelevant refinements around the singularities
at the bottom of the domain. This is a consequence of the ho-
mogeneous Neumann boundary condition satisfied by our
estimated stress field at the Dirichlet boundary conditions
of the original problem. We therefore get error estimates at
these locations that are slightly overestimated, and are there-
fore refined. Finally, we plot, in figure 14, the local maps of
the upper bound, next to local maps for the energy norm of
the error obtained with the corresponding overkill mesh, as
well as the histogram of the local effectivity indices. The
conclusion is essentially the same as for the previous exam-
ple: the local effectivity indices seem to be overestimated for
the elements with the highest participation in the global ef-
fectivity index, and slightly underestimated for the others.
As shown by the rate of convergence obtained using the
adapted meshes (figure 12), the upper bound seems to be
adequate to drive an adaptive process.

5.3 3D carabiner

Finally, we discuss results obtained for a 3D carabiner model.
We consider the material to be aluminium with Young’s mod-
ulus E = 70 GPa and Poisson ratio ν = 0.3. The load is a
surface load representing the pull of a rope on each side of
the carabiner (see figure 15) or the loads taking place dur-
ing an axial stress test. The total force acting on each side
is F = 20 kN, which is a standard value for the design of
such device. The forces acting on each side are equilibrated
so that we do not impose any Dirichlet boundary condition
and the displacement is defined but for a rigid body motion.

The mesh we consider here has 22908 DOFs (note that
the reason for not considering larger meshes is that overkill
computations would then not be possible). The global effec-
tivity index for this mesh is very low, η = 1.06. However,
the authors believe, as was the case in 2D problems, that this
effectivity index might increase slightly for problems with
strong Dirichlet boundary conditions. The maps of the local
upper bounds and energy norm of the exact error (relative
values) are then presented on figure 16. They show an excel-
lent adequacy between the local estimate and exact value of
the energy norm of the error for this problem. Therefore, the
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(a) 2248 DOFs, error: 6.25%

(b) 6044 DOFs, error: 2.48%

(c) 16048 DOFs, error: 1.02%

(d) 32892 DOFs, error: 0.55%

Fig. 13 Sequence of adapted meshes. The errors indicated are the rel-
ative energy norms of the exact error and the white box in mesh (b)
corresponds to the zoom in figure 14

(a) Upper bound (b) Exact error
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(c) Local effectivity indices

Fig. 14 Distribution maps of (a) the upper bound, computed using the
flux-free method, and (b) the exact energy norm of the error, computed
using an ’overkill’ mesh; and (c) histograms of the local effectivity in-
dices. The indices of the four elements with the largest error, summing
up to 50% of the total error, are indicated by black dots on the his-
tograms. The mesh figures are zooms in the white box on the mesh in
figure 13(b)

Fig. 15 Model of the carabiner: the arrows indicate the location and
direction of the loads

flux-free method seems to be, in 3D, an adequate possibil-
ity for the driving of adaptive mesh refinement schemes, as
was already shown in 2D. The histograms showing the ratio,
for each element, of the upper bound on the exact error, are
also very good, although they seem slightly more widespred
than their counterpart in 2D. Note, however, that there is
no singularity in this problem. More study will therefore be
needed to evaluate whether the spreading around the mean
value for that ratio is due to the dimensionality of the prob-
lem or to the singularities in the problem. Further, a large
clustering of low values of the ratio can be observed. By
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comparison of the dark and light grey bars, this clustering
is seen to originate from elements for which the error is ex-
tremely low (lower than 0.01% of the maximum local value
of the exact error), and therefore to be of no importance. As
in 2D, we observe here a tendency of the method to slightly
underestimate the local effectivity indices for elements with
little weight in the evaluation of the global effectivity index
and to slightly overestimate those with more importance (see
the black dots on figure 16).

6 Conclusion

In this paper, we presented a flux-free method for the deriva-
tion of strict upper bounds for the energy norm of the error
between a FE solution and the exact solution, in linear solid
mechanics problems. The computation of the bounds are
performed locally on patches of elements, and do not require
a previous step of global flux equilibration. The bounds were
shown on several examples to be very sharp, and some ways
of improving them were discussed, in particular by perform-
ing accumulation during the minimization, and starting the
process by the stars centered on a singularity when it is
known. It is also possible the increase the order of the poly-
nomial used to represent the admissible stress field, but this
increases the cost of the method disproportionally.

The main limitation of the method we proposed is the
requirement to compute the FE solution using quadratic in-
terpolation functions, so as to ensure the equilibration of the
loads for the local problems in the error estimation. As dis-
cussed, the presence of a large Dirichlet boundary condi-
tion seems to decrease slightly the sharpness of the upper
bound, and this should be investigated further. It should also
be noted that, theoretically speaking, the strict upper bound
property is true only when considering a boundary which is
piecewise-linear.

In the course of this paper, we have shown how to con-
struct a stress field q̂ which is statically admissible in Ω

in the sense that it equilibrates exactly all the loads. How-
ever, we use here only its complementary energy to yield
the desired upper bound. A very promising alternative use
of this statically admissible field is to derive strict bounds in
the context of nonlinear solid mechanics, using the works of
Ladevève and coworkers [34,35]. This will be the object of
a forthcoming paper.
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(b) Exact error

(c) Local effectivity indices

Fig. 16 Distribution maps of (a) the upper bound, computed using the
flux-free method, and (b) the exact energy norm of the error, computed
using an ’overkill’ mesh; and (c) histograms of the local effectivity in-
dices, considering all elements (dark grey bars) or only those for which
the exact error is superior to 1e-4 times the maximum local exact error
(light grey bars). The indices of the ten elements with the largest error,
summing up to 35% of the total error, are indicated by black dots on
the histograms
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5. Ladevèze, P., Pelle, J.P.: Mastering calculations in linear and non-
linear mechanics. Mechanical Engineering. Springer (2005)

6. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adap-
tive procedure for practical engineering analysis. Int. J. Numer.
Meth. Engr. 24, 337–357 (1987)
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8. Babuška, I., Rheinboldt, W.C.: A posteriori error estimates for the
finite element method. Int. J. Numer. Meth. Engr. 12(10), 1597–
1615 (1978)

9. Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite
element method and applications. SIAM J. Numer. Anal. 20(3),
485–509 (1983)

10. Demkowicz, L., Oden, J.T., Strouboulis, T.: Adaptative finite el-
ements for flow problems with moving boundaries. Part I: varia-
tional principles and a posteriori error estimates. Comp. Meths.
Appl. Mech. Engr. 46(2), 217–251 (1984)

11. Zhu, J.Z.: A posteriori error estimation - the relationship between
different procedures. Comp. Meths. Appl. Mech. Engr. 150(1-4),
411–422 (1997)

12. Choi, H.W., Paraschivoiu, M.: Adaptive computations of a posteri-
ori finite element output bounds: a comparison of the ’hybrid-flux’
approach and the ’flux-free’ approach. Comp. Meths. Appl. Mech.
Engr. 193(36-38), 4001–4033 (2004)

13. Parés, N., Dı́ez, P., Huerta, A.: Subdomain-based flux-free a poste-
riori error estimators. Comp. Meths. Appl. Mech. Engr. 195(4-6),
297–323 (2006)

14. Carstensen, C., Funken, S.A.: Fully reliable localized error control
in the FEM. SIAM Journal on Scientific Computing 21(4), 1465–
1484 (1999-2000)

15. Machiels, L., Maday, Y., Patera, A.T.: A ’flux-free’ nodal Neu-
mann subproblem approach to output bounds for partial differ-
ential equations. Comptes-Rendus de l’Académie des Sciences
- Series I - Mathematics 330(3), 249–254 (2000)

16. Morin, P., Nochetto, R.H., Siebert, K.G.: Local problems on
stars: a posteriori error estimators, convergence, and performance.
Math. Comp. 72, 1067–1097 (2003)

17. Prudhomme, S., Nobile, F., Chamoin, L., Oden, J.T.: Analysis of
a subdomain-based error estimator for finite element approxima-
tions of elliptic problems. Numer. Meths. t. Diff. Eqs. 20(2), 165–
192 (2004)

18. Moitinho de Almeida, J.P., Maunder, E.A.W.: Recovery of equi-
librium on star patches using a partition of unity technique. Int. J.
Numer. Meth. Engr. (2008). Submitted

19. Parés, N.: Error assessment for functional outputs of PDE’s:
bounds and goal-oriented adaptivity. Ph.D. thesis, Universitat
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