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SUMMARY

It is well known that the solution of an inverse problem is ill-posed and not unique. To avoid difficulties caused
by this, when solving such a problem, Tikhonov’s regularization terms are usually added to the norm quantifying
the discrepancy between the model’s predictions and experimental data. This regularization term however is often
inadequate to perform the identification of a field of material properties which varies spatially. This is all the
more difficult when dealing with the numericalsolutionof this inverse problem, for the sought field is spatially
discretized and this discretization can influence the result of the identification.

We will here examine an overall strategy using classical adaptive meshing methods used to circumvent these
drawbacks. The first step consists in using two distinct meshes: one associated with the discretization of the sought
spatial field, the other associated with thesolutionof the mechanical problems (forward and adjoint states). Ina
second step, we will introduce local error estimators whichallow an oriented refinement of the mesh associated
with the sought parameters.

This general strategy is applied to a practical case study: the detection of underground cavities using
experimental data obtained by an interferometric device ona satellite. We will then address the question of how
the regularization terms and the error estimator driving the mesh refinement were selected. Copyrightc© 2010
John Wiley & Sons, Ltd.

KEY WORDS: identification; inverse problem; adjoint state; regularization; mesh adaption; error estimators;
quantity of interest.

1. INTRODUCTION

How should the material parameters of a domain be identified when the only available experimental
data are measured on its boundaries? The solution of this inverse problem is well known for being
ill-posed and not unique, so it becomes all the more challenging when the parameters to be identified
depend on the space variable within the studied domain, and when the usually available measurements
are scarce. Also, when solving this inverse problem numerically, the spatial discretization of the
sought parameters field influences the whole identification process. As a result, the addition of relevant
regularization terms to the inverse problem can be quite awkward.

This paper is focused specifically on the detection of underground cavities using experimental
data obtained by an interferometric satellitar device. Techniques for the geometrical reconstruction
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2 G. PUEL AND D. AUBRY

of buried objects (e.g. cracks, cavities or inclusions) through mechanical measurements have been
largely investigated, as listed in the survey paper [1] dealing with inverse problems in elasticity. They
generally consist in the minimization of a misfit function expressing the discrepancy between the
available experimental data and the corresponding quantities calculated with the parameters field being
identified. As regards the case of cavity detection, the minimization can be achieved through gradient-
based optimization techniques used in conjunction with shape sensitivity formulations [2, 3]. Another
approach consists in applying level sets methods to describe the shape of the sought cavity [4]. Instead
of looking for the cavity’s shape, it is also possible to try to directly identify the Young’s modulus
spatial field within the studied domain, as it is applied in specific examples in [5] or [6] using a specific
constitutive relation error in addition to the initial misfit function.

In all cases, since theoretical studies have shown the complexity of this kind of inverse problems
(see e.g. [7, 8] for considerations on uniqueness), prior knowledge is often required in order to avoid
local minima For example, the shape of the cavity can be assumed, or the spatial Young’s modulus
can be sought as a piecewise constant field in a fixed spatial discretization. Techniques such as the
linear sampling method [9, 10] or the topological derivative [11] also allow a preliminary probing of
the medium and can provide an interesting initial guess. In ageneral way, however, regularization can
be difficult to set or adapt.

The problem we address here leads to the same observations: when expressing this cavities detection
issue in terms of an identification problem (the determination of the inner Young’s modulus spatial field
using the measured displacements on the surface of the studied ground), we stress the shortcomings
of classical regularization such as Tikhonov’s when the goal is to identify a spatially-variable field
of material properties. Instead of assuming an arbitrary spatial discretization of the sought Young’s
modulus field, we introduce a strategy using the Finite Element Method (FEM) with a classical adaptive
meshing in order to efficiently regularize the inverse problem.

Adaptive Finite Element techniques are only slowly considered for thesolutionof inverse problems
[12, 13] and to our knowledge only [14, 15] and [16, 17] actually propose a specific method for
solving inverse problems based on adaptive Finite Element meshes, which we want to adapt here in
the case of elastostatics Partial Differential Equations (PDEs). The first step consists in using two
distinct meshes: one associated with the discretization ofthe spatial field to be identified (e.g. Young’s
modulus), typically coarse and which will be progressivelyrefined with adaption techniques, and one
associated with thesolutionof the usual mechanical problems (e.g. stress-strain forward and adjoint
state problems).It is shownthat the choice of a coarse mesh to discretize the sought spatial field allows
a good regularization of the problem, even if the identified parameters fieldis very roughly described.
Therefore in a second step, the introduction of local error estimators can drive the refinement of the
coarse mesh, resulting in an accurate identification of the sought spatial field, as it is demonstrated here
in a practical case of study for an elastostatics problem.

2. PRESENTATION OF THE PROBLEM

Below are described the main features of the specific problemwe want to address, which deals with
the detection of underground cavities through measurements of the displacements at the free surface of
the studied ground. This specific problem is used as an illustrational example of what can be obtained
with the general strategy of identification we present here.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 3

2.1. Experimental data

From a practical point of view, experimental data come from asatellite equipped with an
interferometric radar device measuring the displacement of given points of the surface of the ground,
between two consecutive acquisitions, with an accuracy up to the millimeter, both in horizontal
and vertical directions [18]. Such an experimental technique, called inSAR (synthetic aperture radar
interferometry),allows the monitoring of a very fine grid of points, typicallywith a resolution ofa
dozen of meters, for areas up to a few hundreds of square kilometers.The idea is to use such a device
to monitor the creation and/or the growth of underground cavities such as in [19], which presents the
monitoring of the ground deformation of a site corresponding to the exploitation of underground salt
by solution mining. For the problem addressed here,we assume that no cavity was present when the
first acquisition was done,so the displacement∆uexp measured on the surfaceΣexp of the ground
results from the creation of one or several cavities betweenthe two consecutive acquisitions. Owing to
thesolutionof the measurement process,∆uexp will be considered as a continuous 3D-vectorial field.

The considered detection problem then consists in finding the created cavities within a specific
volumic domain that is characterized by the monitored surface and a given depth, which are set a
priori. In the following, this domain is typically five kilometers deep and ten kilometers large, and
the cavities that are to be found areseveral hundreds of meters large andseveral kilometers below
the surface of the ground, which consequently drops locallya few tens of centimeters. This problem is
depicted in a 2D schematic representation in Figure 1, wherethe monitored surfaceΣexp is symbolized
with hatching.

Figure 1. 2D schematic representation of the considered problem

2.2. The forward model

The forward model to be compared with experimental data relies on some simple non-restrictive
assumptions. The initial ground (i.e. with no cavity) is considered as a homogeneous, isotropic medium,
whose mechanical properties (Young’s modulusE0, Poisson’s ratioν0, mass densityρ0) is well known.
This description will be used as an initial guess in the identification process of the Young’s modulus
spatial field, as well as a means to know the initial depression of the surface of the ground due to gravity
when no cavity is present. This depression is added to the displacement∆uexp measured between two
acquisitions in order to obtain the whole displacementuexp of the surface of the ground, which is the
result of the combined effects of gravity and of the creationof one or several cavities. As a conclusion,
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4 G. PUEL AND D. AUBRY

this displacement fielduexp so defined is considered as the experimental data used in the identification
process defined in the following.

The domain associated with the ground is denotedΩ and the following conditions are verified on
the boundary∂Ω of the domainΩ: whereas no load is applied on the surfaceΣexp of the ground, we
assume that the displacements on the others boundaries of the domain vanish. So the forward problem
is defined as follows: given a Young’s modulus spatial fieldE, we compute the displacement fieldu(E)
in Ω with the following PDE and boundary conditions:

div EC0ε(u) − ρgez = 0 in Ω

u = 0 on∂Ω − Σexp (1)

EC0ε(u)ez = 0 onΣexp

wherediv, ε(u), g and ez are the divergence operator, the small strain tensor, the acceleration of
gravity and an upward vertical vector respectively.C0 is the normalized constitutive relation tensor,
such that the stress tensor stands asσ = EC0ε(u) = E

(
λ̄(trε)I + 2µ̄ ε

)
, whereλ̄ = ν

(1−2ν)(1+ν)

andµ̄ = 1
2(1+ν) are the normalized Lame coefficients, whileI and tr denote the identity tensor and

the trace operator respectively.ν andρ stand for the Poisson’s ratio and the mass density respectively,
whose spatial distributions are assumed knowna priori.

The previous group of equations can be rewritten in terms of aweak formulation as well. Given a
Young’s modulus spatial fieldE belonging to a specific Hilbert spaceP , one seeksu in another Hilbert
spaceV such that:

∫

Ω

tr EC0ε(u)ε(w) dΩ +

∫

Ω

ρgez · w dΩ = 0 ∀w ∈ V0 (2)

with V0 = {w ∈ V |w = 0 on∂Ω − Σexp}.

3. THE INVERSE PROBLEM

We consider that the inverse problem consists in determining the Young’s modulus spatial fieldE
resulting in a displacement field onΣexp as close to the experimental displacementsuexp as possible.

3.1. Formulation of the inverse problem

Classically, thesolutionof the inverse problem consists in minimizing a misfit function, which is a
given norm evaluating onΣexp the discrepancy between the displacement fieldu(E) associated with
the forward problem and the experimental displacement fielduexp:

J0(E) =
1

2

∫

Σexp

‖u(E) − uexp‖
2 dΣexp (3)

which emphasizes the determination of a best fit between experimental and numerical data.
Like any other inverse problem, this problem is ill-posed: the associated solution is unstable and not

unique, in particular when it consists of a spatially-variable field inΩ. This actually means from the
numerical point of view that we have to find a large amount of scalar values, each being associated
with a node of the FE mesh, whereas very few experimental dataare available (in this case: only on the
surface of the ground).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 5

To circumvent this issue, so-called Tikhonov’s regularization terms are usually added to the previous
norm, for instance to bound themagnitudeof the sought spatial field or of its spatial gradient:

J (E) =
1

2

∫

Σexp

‖u(E) − uexp‖
2 dΣexp +

∫

Ω

R(E,∇E) dΩ (4)

where∇E stands for the spatial gradient ofE. We will discuss the choice of such regularization terms
below.

3.2. Adjoint state formulation

The minimization of the previous misfit function (4) is usually performed by means of gradient-based
techniques. In order to avoid time-consuming calculationsas well as inaccuracies associated with
numerical differentiation, the derivative ofJ (E) is analytically introduced by means of an adjoint
state problem.

The solutionz of this adjoint state problem can be considered as a Lagrangemultiplier introduced
in the following Lagrangian functionL(u, E, z):

L(u, E, z) =
1

2

∫

Σexp

‖u − uexp‖
2 dΣexp +

∫

Ω

R(E,∇E) dΩ

−

∫

Ω

tr EC0ε(u)ε(z) dΩ −

∫

Ω

ρ0gez · z dΩ (5)

where(u, E, z) are considered independent. MinimizingJ (E) with u verifying (1) is then equivalent
to writing the first-order stationarity conditions forL(u, E, z).

The first-order stationarity condition with respect tou leads to the adjoint state problem, which is
very close to the forward problem:

∫

Σexp

(u − uexp) · δu dΣexp −

∫

Ω

tr EC0ε(δu)ε(z) dΩ = 0 ∀δu ∈ V0 (6)

except for the associated loading conditions. Instead of body forces within the domain in (2), a
boundary condition is applied to the surface of the groundΣexp and expressed as the discrepancy
between the displacementsu(E) anduexp:

div EC0ε(z) = 0 in Ω

z = 0 on∂Ω − Σexp (7)

EC0ε(z)n = u − uexp onΣexp

Then the first-order derivative ofL(u, E, z) with respect toE allows us to express the directional
derivative of the misfit function easily asDEJ (E) = DEL(u, E, z) with:

DEL(u, E, z) δE =

∫

Ω

(DER(E,∇E) − tr C0ε(u)ε(z)) δE dΩ

+

∫

Ω

D∇ER(E,∇E) · δ∇E dΩ (8)

=

∫

Ω

(
DER(E,∇E) − div D∇ER(E,∇E) − tr C0ε(u)ε(z)

)
δE dΩ

+

∫

∂Ω

D∇ER(E,∇E) · n δE dS

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
Prepared usingnmeauth.cls



6 G. PUEL AND D. AUBRY

3.3. Numericalsolutionof the inverse problem

The minimum of the misfit functionJ (E) is sought as∇EJ (E) δE = 0 ∀δE, which could be
rewritten as the followingoptimalityequations:

trC0ε(u(E))ε(z(E)) = DER(E,∇E) − div D∇ER(E,∇E) in Ω

D∇ER(E,∇E) · n = 0 on∂Ω (9)

The minimization problem eventually consists in solving three PDEs with unknowns(u(E), z(E), E):
the forward problem (1), the adjoint problem (7) and theoptimality equations (9). The identification
process results in thesolutionof a system, which is highly nonlinear in the spatially-variable unknown
field E.

The straightforwardsolutionof this system first consists in choosing finite dimensional subspaces
Vh ⊂ V , V0,h ⊂ V0 andPh ⊂ P using a typical Finite Element (FE) discretization with a given mesh
Mh. Then the discrete problem to solve reads:

∫

Ω

tr EhC0ε(uh)ε(wh) dΩ +

∫

Ω

ρgez · wh dΩ = 0 ∀wh ∈ V0,h

∫

Σexp

(uh − uexp) · wh dΣexp −

∫

Ω

tr EhC0ε(zh)ε(wh) dΩ = 0 ∀wh ∈ V0,h (10)

∫

Ω

(DEh
R(Eh,∇Eh) − trC0ε(uh)ε(zh)) δEh dΩ

+

∫

Ω

D∇Eh
R(Eh,∇Eh) · ∇δEh dΩ = 0 ∀δEh ∈ Ph

with unknowns(uh, zh, Eh) ∈ Vh × V0,h × Ph.

In [20, 21], a complete investigation of how to solve this kind of inverse problem is proposed: the
authors detailed the use of Newton-like methods using Krylov solutions at each Newton iteration. Here,
the numerical method to solve the previous system (10) is a damped Newton method: at each step, the
algorithm computes the analytical expression of the Jacobian matrix associated with the full system,
then its numerical expression using the current values of the unknowns, and finds the best step length
reducing the value of the residual associated with the system. The process is then stopped when the
estimated relative error is below a given threshold. Other strategies could also be considered: instead of
computing the Jacobian matrix associated with the full system, a staggered process could be proposed,
where the forward and adjoint problems on the one hand, the optimality equation on the other hand,
are solved successively.

3.4. First identification results and shortcomings of the classical method

For the time being, we use synthetic data as experimental data in order to study the influence of
the regularization terms used in the inverse problem: the experimental data used here are actually
simulated with a very fine 2D FE meshMhh based on a simplified reference model with only one
homogeneous rectangular layerΩ whose mechanical properties are the following ones:E0 = 60GPa,
ν0 = 0.25, ρ0 = 2, 600kg/m3. The cavity is introduced as an elliptic homegeneous mediumΩc within
Ω, characterized by:Ec = 0.6GPa, νc = 0.25, ρc = 2, 600kg/m3.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
Prepared usingnmeauth.cls



SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 7

As a result, the so-called experimental displacementsuexp are derived from the following problem:
∫

Ω−Ωc

tr E0C0ε(uexp)ε(whh) dΩ +

∫

Ω−Ωc

ρ0gez · whh dΩ

+

∫

Ωc

tr EcC0ε(uexp)ε(whh) dΩ +

∫

Ωc

ρcgez · whh dΩ = 0 ∀wh ∈ V0,hh (11)

Note that the fine mesh used here (about 50,000 quadratic triangular elements) to calculateuexp will
not be used anymore in the following, for thesolutionof the inverse problem should not be dependent
of the mesh used to solve the mechanical problem.

With this very simple example, we tested several regularization terms, using a mesh made of about
6, 000 quadratic triangular elements. For each case, ahomogeneous Young’s modulus field equal to
E0 is used as an initial guess for the nonlinearsolutionof the system of equations (10), whereas the
mass density is assumed to be equal toρ0. With this initial guess, the initial misfit function (with no
regularization)J0 is about 5,600: let us recall thatJ0 is a straightforward indicator of the discrepancy
between the experimental and the model-predicted displacements.

ChoosingR(E,∇E) = α
2 |E−E0|

2 means that the sought Young’s modulusE should remain close
to the modulusE0 of the homogeneous ground, which is knowna priori. When spatially discretized,
the associated optimality equation derived from (9) leads to the third equation of the system (10):

∫

Ω

(α(Eh − E0) − trC0ε(uh)ε(zh)) δEh dΩ = 0 ∀δEh ∈ Ph (12)

Of course, adding such a term results in awell-known,tricky choice of the constantα. In Figure 2, the
final value of the misfit functionJ0 obtained after solving the whole system (10) is plotted against the
values of the regularization parameterα. It can be seen that,if α is set too large, the homogeneous field
E0 is foundas the solutionand the misfit functionJ0 remains equal to its initial value (about 5,600),
whereas ifα is set too small, the regularization is insufficient to deal with the inverse problemand the
algorithm fails to find the solution of the system (10). As a conclusion, it can be said that, whatever the
choice ofα, it is quite impossible to solve the inverse problem and correctly identify the cavity without
using another strategy.

Therefore weproceeded to the study ofanother regularization term, based on the gradient of the
sought Young’s modulus spatial field:

R(E,∇E) =
β

2
‖∇E‖2 (13)

which leads to the followingdiscretized formulation:

−

∫

Ω

trC0ε(uh)ε(zh)δEh dΩ +

∫

Ω

β ∇Eh · ∇δEh dΩ = 0 ∀δEh ∈ Ph (14)

This regularization seems more adapted to the considered inverse problem, because itbinds the
gradient ofthe sought field without restrictingthis latterclose to a specific value.In order to choose a
relevant value for the regularization parameterβ, we proceed to the same analysis as forα: Figure 3
depicts the final values of the misfit functionJ0 after solving (10) for different values ofβ. For high
values ofβ, the regularization is too restrictive and the homogeneous, initial field is found as the
solution of the system (10). Then, whenβ decreases, the final value ofJ0 decreases as well, until the
algorithm fails to find the solution of (10), for values ofβ lower than6 · 10−23.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
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8 G. PUEL AND D. AUBRY

Figure 2.J0-vs.-α curve after solving (10): the algorithm fails to converge whenα < 6 · 10−24

Figure 3.J0-vs.-β curve after solving (10): the algorithm fails to converge whenβ < 6 · 10−23

Nevertheless, finding a relevant value forβ is still a difficult process. For example, we can try to
apply the Morozov discrepancy principle [22, 23], which consists in findingβ for which the final
value ofJ0 after solving (10) is equal to the assumed accuracy or noise level. In the case of radar
interferometry measurements, the accuracy can go up to a fewmillimiters, resulting to a final misfit
function of about10−1 to 1 in our proposed example. We see in Figure 3 that this level corresponds
approximately toβ = 10−21. But, actually, there may be additional noise, coming for example from
the vegetal cover of the monitored ground, which makes the interferometric correlation coefficient drop
significantly [19]. So, to check this choice, we added some Gaussian noise to the so-called experimental
datauexp: Figure 4 shows the values of the misfit functionJ0 after solving (10) for different values of

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
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β, when the standard deviation associated with the Gaussian noise is equal to5 cm. In this case, the
level of the final misfit function should be about25, and gives along with the Morozov discrepancy
principleβ ≈ 10−20.

Figure 4.J0-vs.-β curve after solving (10), with Gaussian noise added touexp: the algorithm fails to converge
whenβ < 10

−22

This previous case also shows that the noisier the data, the higherβ should be chosen to be able to
solve the system (10).However, ifβ is chosenlarger, we get a solution with a very smoothed spatial
variation, unable to represent the cavity that we introduced in (11) to synthesize the experimental data,
as can be seen in Figure 5whereβ = 10−19. The results of the identification are thus extremely
dependent on the value ofβ.

A relevant choice ofβ thus seems to be about10−21 in the considered example. Another
interpretation of this choice is that it should bemade such that both terms in (4) would have the same
magnitude: this could be achieved with:

β ∼
‖uexp‖

2
∞|Σexp||∆x|2

|E0|2|Ω|
(15)

where|∆x| is an equivalent distance giving a rough estimate of the maximal spatial variation of the
sought field.Hereβ ≈ 10−21 corresponds to|∆x| ≈ 25 m.

As proposed in [24] for the same kind of inverse problem, one usual possibility to prevent the
smoothing of the identified Young’s modulus field is to choosethe Total-Variation normR(E,∇E) =
γ‖∇E‖, or else its differentiable counterpart:

R(E,∇E) = γ
√
‖∇E‖2 + η2 (16)

which leads to the following discretized formulation:

−

∫

Ω

tr C0ε(uh)ε(zh)δEh dΩ +

∫

Ω

γ
∇Eh · ∇δEh√
‖∇E‖2 + η2

dΩ = 0 ∀δEh ∈ Ph (17)

Such a choice tends to allow discontinuities in the identified field [25], which seems to be even more
appropriate than the use of the gradient-based regularization with the L2-norm.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
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10 G. PUEL AND D. AUBRY

Figure 5. Shortcomings of the classical Tikhonov’s regularization

The same analysis as before can be conducted, but now two different regularization parameters are to
be set:γ andη. The latter is classically chosen small, but first tests showed that in our case it had to be
set far greater than expected to get the solution of the system (10): forη2 < 106, it is impossible to find
a solution different of the initial uniform fieldE0 This is a first clue that the TV-based regularization
can lead to numerical difficulties when solving (10). Figure6 plots the misfit function after solving (10)
against the values ofγ, for η2 set to109. The same curves are obtained whenη2 = 106 or η2 = 1012

are chosen. According to the Morozov discrepancy principle, for an accuracy of a few millimeters,
γ = 10−14 could be chosen. Once again, to check this choice, we added some Gaussian noise to the so-
called experimental datauexp: Figure 7 shows the values of the misfit functionJ0 after solving (10) for
different values ofγ, when the standard deviation associated with the Gaussian noise is equal to5 cm.
In this case, we getγ ≈ 10−12. What is more significant is that the ability to solve the system (10) is
strongly influenced by the noise level, far more than with gradient-based regularization with parameter
β.

In what follows, we prefer to focus on the gradient-based regularization (13), because this choice
seems less sensitive to the noise level. All in all, the regularizationdifficulties actuallycome from
the fact that we want to determine a spatially-variable fieldrepresented by a large amount of scalar
values to be identified, whereas experimental information is scarce.In addition to the noise,the mesh
that is used for the discretization of this field influences the solutionof the inverse problem.Indeed
it is possible to showthat with stronger assumptions reducing the number of sought parameters,
the identification process is even more efficient. For example, if we know a rough estimate of the
depth of the sought cavity, we can restrict the domain where the Young’s modulus is sought for to
a narrower area. Similarly, if we assume that the shape of thecavity is known, we can express the
detection problem as the determination of the location and the size of the assumed shape. However,

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 11

Figure 6.J0-vs.-γ curve after solving (10): the algorithm fails to converge whenγ < 10
−17

Figure 7.J0-vs.-γ curve after solving (10), with Gaussian noise added touexp: the algorithm fails to converge
whenγ < 10

−14

such assumptions are too restrictive, and make the robustness of the method drop dramatically, so
they will not be considered in what follows.Here we prefer to focus on the discretization aspect of
the inverse problem, to improve both the regularization of the inverse problem and the quality of the
identified spatial field.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
Prepared usingnmeauth.cls



12 G. PUEL AND D. AUBRY

4. ITERATIVE STRATEGY USING MESH ADAPTION

As we mentioned it before, the identification of the Young’s modulus field is linked to the determination
of the scalar unknowns associated with the discretization of this spatial field on a FE mesh. The coarser
this mesh is, the fewer unknowns are to be found, and so the less ill-posed the inverse problem should
be in terms of uniqueness and stability, for the unknown fieldis sought for in a smaller space.By this
means, a slight reduction in the number of unknowns could be favourably obtained as well.However,
using such a coarse mesh would not be convenient to deal with thesolutionof both forward and adjoint
problems, if we wanted to get accurate results.Therefore we will need to go further in a second step to
deal with this restrictive result, by introducing mesh adaptivity.

4.1. Strategy using two different meshes

The best trade-off is to introduce two distinct meshes: a sufficiently refined meshMh for thesolution
of the forward and adjoint problems (1) and (7) and a coarse meshMH for the discretization of the
sought fieldE and thesolutionof theoptimality equation (9). Then the discrete problem consists in
finding (uh, zh, EH) ∈ Vh × V0,h × PH such that:

∫

Ω

tr ΠH
h EHC0ε(uh)ε(wh) dΩ +

∫

Ω

ρ0gez · wh dΩ = 0 ∀wh ∈ V0,h

∫

Σexp

(uh − uexp) · wh dΣexp −

∫

Ω

tr ΠH
h EHC0ε(zh)ε(wh) dΩ = 0 ∀wh ∈ V0,h (18)

∫

Ω

(
DEH

R(EH ,∇EH) − tr C0Π
h
Hε(uh)Πh

Hε(zh)
)
δEH dΩ

+

∫

Ω

D∇EH
R(EH ,∇EH) · ∇δEH dΩ = 0 ∀δEH ∈ PH

whereVh andPH are associated with the fine meshMh and the coarse meshMH respectively, and
Πh

H : Vh → VH andΠH
h : PH → Ph are specific operators associated with pointwise mappings

(projection and extension respectively).The system (18) is solved in the same way as the system (10)
was previously, by using a damped Newton method.

In the following, we use the fine and coarse meshes depicted inFigures 8 and 9 respectively.Mh is
made of about 6,000 quadratic triangular elements whereasMH only has 12 linear triangular elements.
The shape of the cavity introduced in the very fine calculation (11) ofuexp is added for information
purposes, but is not included in the identification process.

With such meshes, thesolution of (18) using a gradient-based regularization term (13) with
β= 10−21 leads to a good guess of the location of the sought cavity, which shows that it is possible
to detect and approximately locate the cavity. The Young’s modulus field, however, is identified in a
very approximate way: Figure 10 shows the identified Young’smodulus obtained with the two meshes
described in Figures 8 and 9, as well as the shape of the elliptic cavity to be found. This first example
thus shows that it is possible to detect the cavity, even if its shape cannot be precisely determined.

To quantify the quality of the identified Young’s modulus, wedefine the following error indicator,
which stands forthe root mean square ofthe relative discrepancy between the experimental and forward
displacement fields on the surface of the ground:

eΣexp
=

√√√√
∫
Σexp

||u − uexp||
2 dΣexp

∫
Σexp

||uexp||
2 dΣexp

(19)
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Figure 8. Example of a fine meshMh for thesolutionof forward and adjoint problems
(5,758 quadratic triangular elements)

Figure 9. Example of an extremeleycoarse meshMH for the discretization of the sought
spatial field (12 linear triangular elements)
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14 G. PUEL AND D. AUBRY

Figure 10. Young’s modulus identified with meshes of Figures8 and 9 (eΣexp = 1.37%)

With the uniform Young’s modulusE0 as an initial guess, the previously defined error indicator
readseΣexp

= 19.0%. After the identification process, and despite the coarse description of the
identified field, the error is quite low, even for an example with synthetic data:eΣexp

= 1.37%. A
look at the two terms of the misfit function (4) after the identification process givesJ0 = 15 and∫
Ω

β

2 ‖∇E‖2 dΩ = 3.0: the two terms are not perfectly balanced, the regularization term being weaker
than the discrepancy term, but it was predictable because the coarse mesh used for the discretization of
the identified field tends to have a regularizing effect.

To demonstrate this regularizing effect, we have plotted inFigure 11 the final values of the misfit
functionJ0 after solving (18) for different values ofβ. When compared to Figure 3, the identification
process using a coarse meshMH for the fieldEH is much more regularized, for values up to10−40

are possible for the regularization parameterβ. Of course, it is also observed that the solution is
not improved any more below a given value ofβ, which roughly corresponds to the value obtained
with (15).

4.2. Iterative strategy with adaptive meshes

To improve the identification further, we propose an iterative method based on Bangerth’s work
[14, 15]: the meshMH used for the discretization of the spatial fieldE is progressively refined
according to classical mesh adaption methods. These latterrely ona posteriorierror estimators, such as
estimators quantifying the quality of a mesh regarding the reference continuous mechanical problem.
For implementation purposes, we begin to choose a L2-norm error indicator based on the residualr
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Figure 11.J0-vs.-β curve after solving (18): the algorithm still converges when β = ·10−40

associated with equation (9):

eL2 =

√∫

Ω

H4|r|2 dΩ (20)

whereH is the local size of the meshMH . This choice can also be justified by the assumption that
there is a constantC such that the errore verifies|e| ≤ CH2|r|. To evaluate the residualr, the solution
of equation (9) is mapped on a mesh identical toMH , but with quadratic shape functions [26]. The
local contribution for a given element is computed by averaging over the element the corresponding
nodal values ofr. The elements whose local contributions are the highest ones are refined: the algorithm
selects these elements in a way that at each refinement stepk + 1, about three quarters of the initial
number of elements ofMk

H are added to the meshMk+1
H used in the next step.The adaption steps

stop when the global error is below a given threshold characterizing the quality of thesolution of
the optimality equation (9), and consequently of the identified spatial field E, or when no further
improvement of the global error indicator is noticeable. Let us note that the idea of using for this kind
of inverse problem a multiscale approach to enhance the chance of keeping the successive iterates
within the basin of attraction of the global minimum was alsoproposed in [27], but this multigrid
approach was not based on adaptive mesh refinement techniques.

Of course, it would be possible to use similar L2-norm error indicators to refine the meshMh as
well. Here, however, this choice is not made for implementation purposes, and we assume that the
meshMh is sufficiently refined for thesolutionof the forward and adjoint problems (1) and (7).

4.3. Application of the strategy to the 2D example

This iterative strategy is applied to the problem of locating subterranean cavities using the synthetic
datauexp derived from (11). Figure 12 illustrates the identificationof an elliptic cavity using 6 adaption
steps refining the initial discretization meshMH (12 linear elements) to a meshM6

H with about
2,000 elements in the end (Figure 13). The shape of the introduced cavity in (11) can be seen in both
figures in the bottom left of the studied domain.
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16 G. PUEL AND D. AUBRY

Figure 12. Young’s modulus identified after 6 refinement steps (eΣexp = 0.235%)

Figure 13. Discretization meshM6

H for the identified field after 6 refinement steps
(1,758 linear triangular elements)

Figure 13 also demonstrates that the successive refinementsoccur near the location of the sought
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cavity, as well as close to the surface of the ground, where the solution of the adjoint problem
is mainly located and influences theoptimality equation (9). After these 6 iterations, the relative
discrepancy indicator iseΣexp

= 0.235%, which shows the improvement of the identification by means
of the iterative strategy (compared to1.37% when using the meshMH and no refinement). Further
refinements do not lead to any noticeable improvement.After these 6 refinement steps, the balance
between the two terms of the misfit function (4) is the following:J0 = 0.43 and

∫
Ω

β

2 ‖∇E‖2 dΩ = 4.6.
The discrepancy decreased while the regularization terms remained quite the same as previously,
leading to a solution slightly oversmoothed.

4.4. Influence of measurement noise

The same strategy is then applied to the same example as in theprevious paragraph, butto test the
sensitivity of the method to noise,a Gaussian noise with apurposely overestimated 50 cm-standard
deviation is added to the experimental displacementsuexp derived from (11). The initial error indicator
is eΣexp

= 21.5%. The identified Young’s modulus is depicted in Figure 14: 6 iterative refinements of
the mesh associated with the Young’s modulus field have been achieved, and the relative discrepancy
indicator iseΣexp

= 9.07%.
When the forward displacement is calculated onΣexp using the identified Young’s modulus, this

displacement field is very close to the experimental one before adding the Gaussian noise (a ’corrected’
error estimator, where the noise has been erased, would giveeΣexp

= 0.949%), which shows that the
identification process tends to filter the noise on the experimental data, even at this high noise level.
Figure 15 shows how the initial mesh associated with the discretization of the Young’s modulus evolved
into the meshM6

H with about 2,000 elements: due to the noise on the experimental data, more elements
were refined on the vicinity of the surface of the ground than in the previous case.

Figure 14. Young’s modulus identified after 6 refinement steps in the case of
experimental data with noise (eΣexp = 9.07%)
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18 G. PUEL AND D. AUBRY

Figure 15. Discretization meshM6

H for the identified field after 6 refinement steps
in the case of experimental data with noise (1,789 linear triangular elements)

This example tends to show the applicability of the method toactual interferometric radar
measurements, for the strategy is able to deal with highly-corrupted data.

4.5. Robustness of the strategy

In order to demonstrate the robustness of the strategy, we create with a calculation analogous to (11)
new synthetic displacementsuexp associated with the case of two distinct subterranean cavities: the
first one in the same location as in the previous examples, thesecond one in the vicinity of the surface
of the ground.The initial error indicator with a uniform Young’s modulusE0 giveseΣexp

= 25.7%.
We apply then the iterative strategy beginning with the sametwo meshesMh andMH as in

Figures 8 and 9 respectively. Figure 16 shows the identified Young’s modulus after 5 refinement
steps: when compared to the shapes indicating the locationsof both cavities introduced in (11), this
spatial field allows to determine clearly both cavities, even if the deepest one is only roughly located.
Figure 17 depicts the associated meshM6

H (about 1,000 elements) after 6 refinement steps: the relative
discrepancy indicator iseΣexp

= 3.10%, which is quite low (compared to0.235% for the example with
only one cavity). This example concludes on the quality of the identification and eventually shows the
robustness of the introduced strategy: this is an additional point tending to demonstrate the applicability
of the method to actual interferometric radar measurements.

4.6. Application to a 3D case

Extending the strategy to the third dimension is straightforward. Experimental displacements are
simulated with a very fine 3D mesh modeling the occurrence of acavity in a calculation analogous
to (11). As before, the iterative identification process is achieved using the experimental displacements
uexp on the surface of the ground.
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Figure 16. Young’s modulus identified after 6 refinement steps
in the case of two cavities (eΣexp = 3.10%)

Figure 17. Discretization meshM6

H for the identified field after 6 refinement steps
in the case of two cavities (1,148 linear triangular elements)
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Figure 18 shows 2D sections of the identified Young’s modulusafter 11 refinement steps. The
coordinates of these 2D sections correspond to the coordinates of the center of the cavity used in
(11) and its shape is drawn in the figure. In comparison with the shape of the sought cavity, we can see
more clearly in Figure 19 each of these 2D sections, or in Figure 20 the50GPa-isosurface. Eventually,
the relative discrepancy indicator iseΣexp

= 1.01%, which is quite low and allows us to conclude on
the quality of the identification in the 3D case.

Figure 18. Young’s modulus identified after 11 refinement steps in the 3D case (eΣexp = 1.01%)

Figure 19. Young’s modulus identified after 11 refinement steps in the 3D case
- yz, xy and zx sections (from left to right)
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Figure 20.50GPa-isosurface for the Young’s modulus identified
after 11 refinement steps in the 3D case

5. FURTHER IMPROVEMENTS OF THE ITERATIVE STRATEGY

From the previous section, we can conclude that the proposedstrategy is both efficient and robust: for
each case, it is possible to locate the sought cavity or cavities quite accurately. However, the Young’s
modulus spatial field that is finally identified is not the one that was used to simulate the experimental
datauexp in (11). The main reason for this is that we used a regularization term based on the norm of
the gradient: even if the proposed strategy relies on a progressively refined meshMH , the identified
field tends to be smoothed because the gradient-based regularization term (13) is minimized along with
the initial misfit function (3). Although the uniqueness of the solution has been restored by this means,
it is not possible to have a good guess of the size of the soughtcavity.

5.1. On the gradient-based regularization

A possible solution would be to set different values of the gradient-based regularization term according
to which step of the iterative strategy is concerned. Typical values such as (15) can be used in the first
steps of the strategy, when regularization has to be sufficiently restrictive in order the identified field
not to diverge, then lower values can be proposed in the last steps of the strategy, once the iterative
mesh refinements concerningMH drove the determination of the sought field to a given pattern. To do
this, the following regularization term is proposed:

R(E,∇E) =
β(H)

2
‖∇E‖2 (21)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
Prepared usingnmeauth.cls



22 G. PUEL AND D. AUBRY

whereβ is not a constant any more, but depends on the local sizeH of the elements ofMH :

β(H) =
‖uexp‖

2
∞
|Σexp|

|E0|2|Ω|
H2 (22)

With such an expression, the regularization is strong when the element is large, its effect being reduced
when the meshMH is refined. Typically, with such a regularization based on (22), the Young’s
modulus gradient should not be higher than that associated with a linear evolution of the Young’s
modulus along the element, that isE0/H .

We used this evanescent gradient-based regularization with the previous 2D example (11). Figure 21
shows the identified Young’s modulus after 6 iterations, while Figure 22 depicts the associated mesh
M6

H made of about 1,000 elements. Although the identified Young’s modulus field seems to be
smoothed once again, the relative discrepancy indicator iseΣexp

= 0.170%. We should recall that
the relative discrepancy indicator associated with theinitial gradient-based regularization (15)was
eΣexp

= 0.235% after 6 iterations.

Figure 21. Young’s modulus identified after 6 iterations with the
evanescent gradient-based regularization (eΣexp = 0.170%)

Attempts to propose a faster evanescent gradient-based regularization did not succeed, for the
nonlinear algorithm to solve (18) did not converge any more after just a few steps.

5.2. On the use of a quantity of interest

Another limitation of the initial strategy lies in the fact that the closer we are to the minimum of the
misfit function, the smaller the magnitude of the adjoint solution is, and so, the slower the convergence
of the iterative strategy is, for the error estimator (20) driving the mesh refinement is associated with a
vanishing optimality equation. In order tocircumventthe evanescence of the adjoint solution, we can
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Figure 22. Discretization meshM6

H for the identified field after 6 iterations with the
evanescent gradient-based regularization (1,353 linear triangular elements)

modify the initial Lagrangian function (5) (used to derive the stationarity conditions) by focusing on a
so-called quantity of interestE(u, E, z). The use of such a quantity has been proposed in [16, 17] to
drive the mesh refinement in a parameter identification problem where the main target was the accurate
estimation of the quantity of interest rather than the identification of the parameter field itself. In these
references, only one mesh was used for discretizing the forward and adjoint problems along with the
parameter field, and the mesh refinement was driven by error estimators related to the chosen quantity
of interest. Here we are interested in extending this concept of quantity of interest to the case where two
different meshes are used, even if the main target remains the identification of the Young’s modulus
spatial field. The idea is to drive the identification processwith a more relevant mesh refinement than in
the initial strategy, because, if appropriately chosen, the quantity of interest does not vanish in optimum,
hence introducing a non-vanishing additional adjoint solution as well.

Here, as an example, we choose the following quantity of interest:

E(E) =
1

|Ω|

∫

Ω

E dΩ (23)

which represents the mean value of the Young’s modulus spatial field over the whole domainΩ. Such
a quantity will not tend to zero as successive iterations arecomputedand can also be seen as a guess of
the cavity’s size: if it is assumed that the Young’s modulus associated with the cavity is negligible when
compared with that of the ground, the cavity’s volume can be estimated with the following expression:

Vc =

(
1 −

E(E)

E0

)
|Ω| (24)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2010;00:1–28
Prepared usingnmeauth.cls



24 G. PUEL AND D. AUBRY

The quantity of interest is introduced by means of a new Lagrangian functionL̂(u, E, z, û, Ê, ẑ)
verifying:

L̂(u, E, z, û, Ê, ẑ) = E(u, E, z)

+DuL(u, E, z)û + DEL(u, E, z)Ê + DzL(u, E, z)ẑ (25)

Whereas the first-order stationarity conditions relatively to the Lagrange multipliers(û, Ê, ẑ) lead
to the initial group (1)-(7)-(9) of PDEs to be solved, three additional equations corresponding to the
stationarity relatively to(u, E, z) can be derived:

−

∫

Ω

tr ÊC0ε(z)ε(δu) dΩ −

∫

Ω

tr EC0ε(ẑ)ε(δu) dΩ (26)

+

∫

Σexp

û · δu dS = −DuE(u, E, z) δu ∀δu ∈ V0

−

∫

Ω

tr ÊC0ε(u)ε(δz) dΩ −

∫

Ω

tr EC0ε(û)ε(δz) dΩ (27)

= −DzE(u, E, z) δz ∀δz ∈ V0

−

∫

Ω

tr δEC0ε(û)ε(z) dΩ −

∫

Ω

tr δEC0ε(u)ε(ẑ) dΩ (28)

+

∫

Ω

D2
ER(E,∇E)ÊδE dΩ +

∫

Ω

D2
∇ER(E,∇E)∇Ê · ∇δE dΩ

= −DEE(u, E, z) δE ∀δE ∈ P

These equations define a dual problem associated with the gradient of the quantity of interest.A close
look at the equations of the previous system shows that the dual adjoint solution̂z does not tend to zero
as the primal forward solutionu tends to the experimental datauexp.

Concerning the numericalsolutionof the dual problem, we use the same meshes as for thesolution
of the primal problem (1)-(7)-(9) : the fine meshMh for thesolutionof the equations associated with
û andẑ, and the coarse meshMH for thesolutionof the equation associated witĥE. The numerical
dual problem then consists in finding(ûh, ẑh, ÊH) ∈ V0,h × V0,h × PH such that:

−

∫

Ω

tr ΠH
h ÊHC0ε(uh)ε(wh) dΩ −

∫

Ω

tr ΠH
h EHC0ε(ûh)ε(wh) dΩ (29)

= −Dz
h
E(uh, ΠH

h EH , zh)wh ∀wh ∈ V0,h

−

∫

Ω

tr ΠH
h ÊHC0ε(zh)ε(wh) dΩ −

∫

Ω

tr ΠH
h EHC0ε(ẑh)ε(wh) dΩ (30)

+

∫

Σexp

ûh · wh dS = −Du
h
E(uh, ΠH

h EH , zh)wh ∀wh ∈ V0,h

−

∫

Ω

tr δEHC0Π
h
Hε(ûh)Πh

Hε(zh) dΩ −

∫

Ω

tr δEHC0Π
h
Hε(uh)Πh

Hε(ẑh) dΩ (31)

+

∫

Ω

D2
EH

R(EH ,∇EH)ÊHδEH dΩ +

∫

Ω

D2
∇EH

R(EH ,∇EH)∇ÊH · ∇δEH dΩ

= −DEH
E(Πh

Huh, EH , Πh
Hzh) δEH ∀δEH ∈ PH

where(uh, zh, Eh) ∈ Vh × V0,h × Ph are derived from (18) as previously.Here, the successive
refinements ofMH are driven by an error estimator analogous to (20), using theresidual associated
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with the dual optimality equation (31), extending the studypresented in [16, 17], where only one mesh
was used, to the proposed strategy with two different meshes, whereMH is the specific mesh used for
discretizing the sought spatial field.

We applied this primal-dual formulation with the quantity of interest (23) along with the evanescent
gradient-based regularization (21) on the previous 2D example (11). Interesting is to note that we
succeeded in setting a lower value for the evanescent regularization (β(H) ≈ 10−27H2) than the
expression (22)(β(H) ≈ 10−26H2) that we used previously. The use of a quantity of interest seems
to have a positive impact on the regularization of the inverse problem, for with lower values than
β(H) ≈ 10−26H2, there were problems of convergence in thesolutionof theinitial problem associated
with thesystem (18).

Figure 23 shows the identified Young’s modulus after 6 iterations. Although the identified Young’s
modulus field seems to match less accurately the location of the cavity introduced in (11), the relative
discrepancy indicator iseΣexp

= 0.106%, which is lower than with the previous evanescent gradient-
based regularization (22) (eΣexp

= 0.170% after 6 iterations), and than with the initial gradient-based
regularization (15) (eΣexp

= 0.235% after 6 iterations).
The study of the quantity of interest is the following: after6 iterations,E = 54.5GPa, which

corresponds to an estimated cavity’s volume of aboutVc = 4.58km3 (for a width of 1km). For
the same width of considered ground, the actual volume of thecavity defined in (11) defining the
experimental data wasVc = 1.58km3, sinceE = 58.1GPa. The estimated volume is then three times
too high, which seems once again a consequence of choosing a gradient-based regularization. This
conclusion, however, should be slightly nuanced, for the estimated cavity’s volume with the previous
formulations (for both initial gradient-based (15) and evanescent gradient-based regularization (22))
was Vc = 5.25km3 for a width of 1km (E = 53.7GPa). It seems then that using the average
Young’s modulus as quantity of interest led to a better estimation of the cavity’s volume, even if this
improvement remains restricted by the gradient-based regularization term.

Figure 24 depicts the associated meshM6
H made of about 300 elements only. The choice of

a quantity of interest defined on the whole domainΩ seems to have driven a more homogeneous
refinement of the meshMH . Even if the finally obtained meshM6

H is still quite coarse, it is sufficient
to describe the identified Young’s modulus field in a better way than with the previous formulations,
for eΣexp

= 0.106% corresponds to the lowest value of therelative discrepancy indicatorover all the
identifications results after 6 iterations.

Even if these first conclusions need further investigations, using a quantity of interest to drive the
mesh refinement on which the proposed strategy is based seemsto improve both the regularization
of the inverse problem and the result of the identification itself. In addition, the meshMH used for
the discretization of the sought Young’s modulus spatial field seems to have been refined in a more
effective way, for the final error indicator is lower than with the other formulations, whereas the final
mesh is coarser.

6. CONCLUSION

When dealing with the inverse problem of identifying a spatial field of material properties, one is
confronted with the difficult choice of a relevant regularization. This is particularly true when the
sought field is discretized on a FE mesh, for the choice of thislatter can influence the result of the
identification.

Here we introduce a general iterative strategy using adaptive meshes in order to circumvent the
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Figure 23. Young’s modulus identified after 6 iterations: formulation with quantity of interest
along with the evanescent gradient-based regularization (eΣexp = 0.106%)

Figure 24. Discretization meshM6

H for the identified field after 6 iterations: formulation withquantity of
interest along with the evanescent gradient-based regularization (305 linear triangular elements)
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shortcomings of the classical regularization methods. Thegoal is to use a specific meshMH for
the spatial discretization of the field to be identified, independently from the meshMh used to
discretize the forward and adjoint problems. The use of a coarse mesh forMH makes the choice
of the regularization terms easier, and the identification can be improved by refining the meshMH

according to classical error estimators.
The robustness of such a strategy to solve spatial inverse problems has been illustrated in the

specific case of the detection of underground cavities. In addition, several improvements of the
initial formulation have been proposed so that this iterative strategy could give even more accurate
identification results. The comparisons of the different formulations, however, are made difficult by
the fact that the discrepancy indicator (19) that we introduced exhibits very low values in most cases,
which may be associated with the synthetic data used.On the other hand, the addition of artificial noise
to these synthetic data at a far higher level than the actual interferometric radar devices have tended
to demonstrate the robustness of the strategy in the case of corrupted data. Therefore the successful
application of this identification strategy on actual experimental data such as in [19] should be possible,
and give in addition valuable information about the different choices made all along the strategy.
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