M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Problems, vol.21, issue.2, pp.1-50, 2005.
DOI : 10.1088/0266-5611/21/2/R01

URL : https://hal.archives-ouvertes.fr/hal-00111264

M. Bonnet, BIE and material differentiation applied to the formulation of obstacle inverse problems, Engineering Analysis with Boundary Elements, vol.15, issue.2, pp.121-136, 1995.
DOI : 10.1016/0955-7997(95)00011-C

URL : https://hal.archives-ouvertes.fr/hal-00092369

G. Feijoo, A. Oberval, and P. Pinsky, An application of shape optimization in the solution of inverse acoustic scattering problems, Inverse Problems, vol.20, issue.1, pp.199-228, 2004.
DOI : 10.1088/0266-5611/20/1/012

M. Burger, Levenberg???Marquardt level set methods for inverse obstacle problems, Inverse Problems, vol.20, issue.1, pp.259-282, 2004.
DOI : 10.1088/0266-5611/20/1/016

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Constantinescu, On the identification of elastic moduli from displacement-force boundary measurements, Inverse Problems in Engineering, vol.43, issue.1, pp.293-315, 1995.
DOI : 10.1080/174159795088027587

P. Feissel and O. Allix, Modified constitutive relation error identification strategy for transient dynamics with corrupted date: the elastic case, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.13-161968, 2007.

M. Ikehata, Inversion Formulas for the Linearized Problem for an Inverse Boundary Value Problem in Elastic Prospection, SIAM Journal on Applied Mathematics, vol.50, issue.6, pp.1635-1644, 1990.
DOI : 10.1137/0150097

G. Nakamura and G. Uhlmann, Uniqueness for identifying Lamé moduli by Dirichlet to Neumann map, Inverse problems in engineering sciences (ICM 90 Satellite Conference Proceedings), Yamaguti N. et al, 1991.

A. Charambopoulos, D. Gintides, and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity, Inverse Problems, vol.18, issue.3, pp.547-558, 2002.
DOI : 10.1088/0266-5611/18/3/303

N. Fata, S. Guzina, and B. , A linear sampling method for near-field inverse problems in elastodynamics, Inverse Problems, vol.20, issue.3, pp.713-736, 2004.
DOI : 10.1088/0266-5611/20/3/005

M. Bonnet, Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.37-40, pp.37-405239, 2006.
DOI : 10.1016/j.cma.2005.10.026

URL : https://hal.archives-ouvertes.fr/hal-00092360

B. Ameur, H. Chavent, G. Jaffré, and J. , Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities, Inverse Problems, vol.18, issue.3, pp.775-794, 2002.
DOI : 10.1088/0266-5611/18/3/317

R. Li, W. Liu, H. Ma, and T. Tang, Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems, SIAM Journal on Control and Optimization, vol.41, issue.5, pp.1321-1349, 2002.
DOI : 10.1137/S0363012901389342

W. Bangerth, Adaptive Finite Elements Methods for the Identification of Distributed Parameters in Partial Differential Equations, 2002.

W. Bangerth and A. Joshi, Adaptive finite element methods for the solution of inverse problems in optical tomography, Inverse Problems, vol.24, issue.3, p.34011, 2008.
DOI : 10.1088/0266-5611/24/3/034011

R. Becker and B. Vexler, A posteriori error estimation for finite element discretization of parameter identification problems, Numerische Mathematik, vol.96, issue.3, pp.435-459, 2003.

R. Becker and B. Vexler, Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations, Journal of Computational Physics, vol.206, issue.1, pp.95-110, 2005.
DOI : 10.1016/j.jcp.2004.12.018

URL : https://hal.archives-ouvertes.fr/hal-00158887

A. Ferretti, G. Savio, R. Barzaghi, A. Borghi, S. Musazzi et al., Submillimeter Accuracy of InSAR Time Series: Experimental Validation, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.5, pp.1142-1153, 2007.
DOI : 10.1109/TGRS.2007.894440

D. Raucoules, C. Maisons, C. Carnec, L. Mouelic, S. King et al., Monitoring of slow ground deformation by ERS G. PUEL AND D. AUBRY radar interferometry on the Vauvert salt mine (France) Comparison with ground-based measurement, Remote Sensing of Environment, vol.8, pp.468-478, 2003.

G. Biros and O. Ghattas, Parallel Lagrange--Newton--Krylov--Schur Methods for PDE-Constrained Optimization. Part I: The Krylov--Schur Solver, SIAM Journal on Scientific Computing, vol.27, issue.2, pp.687-713, 2005.
DOI : 10.1137/S106482750241565X

G. Biros and O. Ghattas, Parallel Lagrange--Newton--Krylov--Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange--Newton Solver and Its Application to Optimal Control of Steady Viscous Flows, SIAM Journal on Scientific Computing, vol.27, issue.2, pp.714-739, 2005.
DOI : 10.1137/S1064827502415661

V. A. Morozov, Methods for solving incorrectly posed problems, 1984.
DOI : 10.1007/978-1-4612-5280-1

J. Kaipio and E. Somersalo, Statistical and computational inverse problems, 2005.

M. Gockenbach and A. Khan, An Abstract Framework for Elliptic Inverse Problems: Part 2. An Augmented Lagrangian Approach, Mathematics and Mechanics of Solids, vol.14, issue.6, pp.517-539, 2009.
DOI : 10.1177/1081286507087150

R. Acar and C. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, vol.10, issue.6, pp.1217-1229, 1994.
DOI : 10.1088/0266-5611/10/6/003

R. Verfurth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, 1996.

I. Epanomeritakis, V. Akcelik, O. Ghattas, and J. Bielak, A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion, Inverse Problems, vol.24, issue.3, p.34015, 2008.
DOI : 10.1088/0266-5611/24/3/034015