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ABSTRACT. We present in this paper a numerical model of the erosion of a soil that accounts
for both the flow in the open fluid and the flow of fluid through the porous soil. The interface
between the open fluid and the soil is represented using a level-set function, and the erosion
is controlled by the shear stress vector. The evaluation of the approximate value of this gra-
dient is particularly focused on, and an improved method, called XFE+ method, is presented.
Numerical results in 2D and 3D illustrate the accuracy and the potentiality of this method.

RÉSUMÉ. Cet article décrit un modèle numérique d’érosion du sol, qui prend en compte à la fois
le fluide dans le sol, considéré comme un milieu poreux, et le fluide extérieur. L’interface entre
les deux milieux est représentée à l’aide d’une fonction level-set, et l’érosion est contrôlée par
le gradient de la vitesse du fluide. Nous nous concentrons particulièrement sur l’évaluation nu-
mérique de ce gradient, et introduisons une méthode, appelée méthode XFE+, pour l’améliorer.
Des résultats numériques en 2D et 3D montrent la précision et les potentialités de cette mé-
thode.
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1. Introduction

The requirement to capture the position and evolution of an interface is central

to many areas of engineering and science, including metal forging, oceanography,

imaging, flame modeling, melting of materials, and more generally, the modeling of

heterogeneous or multi-phases materials. Along the years, several methods have been

devised for such problems (Crank, 1984). Among the most used ones are front track-

ing methods, in which the mesh is refined or deformed to follow the displacement

of the interface (Unverdi et al., 1992), and the marker-in-cell method (Gorczyk et
al., 2006; Jan, 2007), in which a large set of markers follows the material in a la-

grangian way, hence describing the position of each phase. However, both methods

induce high computational costs. Indeed, to keep the numerical accuracy to an ap-

propriate level, it is necessary, in the former class of methods, to re-mesh the domain

when the deformations increase. Likewise, the number of markers necessary to follow

appropriately an interface is shown to be prohibitive for computational implementa-

tion (van Keken et al., 1997).

Level-set functions (Sethian, 1999; Osher et al., 2001) provide a very efficient

and elegant alternative to these techniques. In the simplest setting, they allow to dis-

criminate between two areas of a domain, with no explicit parameterization of the

actual interface. Level-sets are functions defined on the entire domain, whose sign

indicates the belonging to one or the other of the two areas. Usually, their absolute

value represents the smallest distance to the interface, which is hence indicated by the

cancellation of the level-set. Conceptually, they are constructed in a space of higher

dimension than the interface they intend to represent, with an improved mathematical

behavior that allows for an easier manipulation.

Since the first use of level-set functions in the description of dynamical two-phase

fluid systems (Osher et al., 1988; Sussman et al., 1994), their power has been acknowl-

edged for the parameterization of complex evolving phases. In particular, their ability

to deal with changes in topology without any remeshing has been recognized (Mulder

et al., 1992; Karlsen et al., 2000). They have been used in several fields of geo-

physics and geomechanics, including modeling of two-phase flows and permeability

estimation in reservoir simulations (Karlsen et al., 2000; Nielsen et al., 2008), tectonic

plates subduction (Zlotnik et al., 2007; Zlotnik et al., 2008), seismic waves travel time

computation (Sethian et al., 1999), and, generally, for inverse problems and optimal

design (Ito et al., 2001; Burger, 2001; Burger et al., 2005).

Following previous papers (Cottereau et al., 2010; Golay et al., 2010), we propose

in this paper to use a level-set function to describe a process of erosion. We propose

a framework in which both the fluid flow through the soil and the open fluid flow are

modeled by the same Brinkman equation, but with physical parameters varying by or-

ders of magnitude. This generalizes and formalizes what was introduced in (Cottereau

et al., 2010) for Darcy’s law. It can also be seen as the physical counterpart from the

more numerical approach in (Golay et al., 2010), based on a penalization method taken

from (Angot et al., 1999). The second novel aspect of this paper lies in the numerical
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approach that is used to solve the coupled Brinkman equations problem. We introduce

a new method, denoted XFE+ method, that is based on the more classical eXtended

Finite Element (XFE) method (Chessa et al., 2003; Moës et al., 2003; Legrain et
al., 2008; Zlotnik et al., 2009), but ensures a better evaluation of the fluxes at the in-

terface. As the latter constitutes a classical ingredient of erosion models, this accuracy

is of the upmost importance here.

In the next section (section 2), we introduce the erosion model, for which we

follow classical lines. We also introduce the three models that are available for the

description of fluid flows: Darcy’s law, Brinkman equations and Stokes equations.

Further, we highlight their relations through homogenization. The main objective of

this section is to show that it is reasonable to use the same Brinkman equation on

both sides of the eroding interface, but with parameters varying by order of magnitude

for the open flow and the porous medium. In section 3, the numerical ingredients of

the XFE+ method are introduced, including the level-set functions, Hamilton-Jacobi

equation and the different between XFE and XFE+ methods. Finally, two numerical

examples are presented. In section 4.1, a 2D example is presented, to emphasize the

lack of accuracy of classical methods in the evaluation of the fluxes at the interface.

The second example, in section 4.2, is a first 3D application aimed at showing the

potentiality of the method at solving large problems.

2. Physical description of the problem

In this section, we introduce the basic modeling ingredients used in this paper:

possible models of the fluid flow, the chosen one and the geometry, and the model of

erosion.

2.1. Modeling of the fluid flow

We will consider in this paper three different models for the fluid flow: Darcy and

Brinkman’s laws, and the Stokes equations. The first one is used in general for the flow

of water in a porous medium, the latter is used more often for open fluid flows, and

Brinkman’s law is an intermediate between the two others. We describe each of these

models below, and discuss their relation, with a particular view at homogenization.

In figure 1 are sketched both the general setting of a two-phases problem of erosion,

where an open flow is coupled to a porous medium, and the particular periodic ho-

mogenization setting that is used to derive theoretically Darcy’s law and Brinkman

equations.
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Figure 1. General setting of a two-phases problem (left figure), and detail of the pe-
riodic homogenization setting used to derive Darcy and Brinkman equations (right
figure)

2.1.1. Stokes equation

We consider here only the quasi-static version of the Stokes equation, in which the

inertial term has been neglected. It is written in terms of the fields of velocity v(x, t)
and pressure p(x, t), and reads: find (v, p) ∈ [H1

0 (Ω)]
d × L2(Ω)/R such that:

{

−∇ · (ν∇sv) +∇p = ρg

∇ · v = 0
[1]

with boundary conditions that will be discussed further. In these equations, ν is the

viscosity of the fluid, ρ its density, g is the gravitational acceleration vector, and ∇s =
(∇ + ∇T )/2 represents the symmetric part of a gradient. Note that this equation is

quasi-static because the inertial terms have been neglected, so that there is no explicit

time derivative in the equation. However, because we will consider erosion later on,

the domain will be modified with time, and hence the velocity and pressure fields will

evolve with time. Incidentally, we will not consider initial conditions, but rather an

initial geometry of the domain Ω.

Stokes equations are used to model the flow of a fluid in which advective forces are

small compared with viscous forces (low Reynolds number). It is the case for example

in flows with slow velocities, large viscosities, or very small length scales.

2.1.2. Brinkman flow

When considering the flow of a fluid in a porous medium, Stokes equations can still

be used. However, the definition of the precise geometry of all the interfaces between

the fluid and the matrix of the medium is then required. When this information is

available, which is rarely the case, the cost of the solution of the Stokes equation then
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becomes very large because the details of the geometry have to be accounted for very

precisely (Narsilio et al., 2009).

It is therefore often interesting to take into account that influence through the use of

a homogenized medium. The matrix of the porous medium is therefore not modeled,

and the equations are modified with an additional term that accounts for equivalent

drag forces induced on the fluid by the interaction with the matrix. Several authors

have derived different methods to estimate this equivalent drag force (Tartar, 1980;

Allaire, 1991a; Allaire, 1991b; Jäger et al., 1996). In all of these approaches, the

medium is modeled as periodic, with characteristic lengths for the periodicity cell and

the matrix inclusions going both to zero at different rates. The homogenization of a

random array of impenetrable solid inclusions is treated in (Rubinstein, 1986).

Among others, (Allaire, 1991a) shows that (in 3D, and for homogeneous Dirichlet

boundary conditions at the matrix-fluid interfaces), if the size ǫ of the periodicity cell

and the size aǫ of the matrix inclusion both tend to zero, such that the ratio σ2
ǫ =

ǫ3/aǫ tends to a constant value 0 < σ2 < +∞, then the solution of the Stokes

problem converges to the solution of the following Brinkman equations: find (v, p) ∈
[H1

0 (Ω)]
d × L2(Ω)/R such that:

{

−∇ · (ν∇sv) +
ν
σ2M0v +∇p = ρg

∇ · v = 0
[2]

with appropriate boundary conditions. The additional term in the balance of momen-

tum represents the homogenized drag force from the matrix onto the fluid. The tensor

M0 only depends on the shape of the matrix in the periodicity cell, and can be obtained

from the solution of an alternative problem, posed on the unit matrix structure, with

boundary conditions at infinity. Note that these equations are homogenized, so both

the velocity and pressures fields, normally defined only in the fluid, are prolongated

within the matrix (by zero for the velocity and by an average value for the pressure,

see (Allaire, 1991a)).

It is interesting to note that when σ = +∞ (meaning that, compared to the

Brinkman case, the size of the matrix inclusions are small relatively to the size of

the periodicity cells), the Stokes equations are retrieved (Allaire, 1991b). This gives

a quantitative definition to the idea that matrix inclusions that are too small cannot

influence the fluid flow.

2.1.3. Darcy’s law

On the other hand, if the rate of convergence of the size of the matrix aǫ is larger

asymptotically (σ = 0), the linear term in velocity becomes predominant, and Darcy’s

law is encountered. More precisely, the rescaled solution (vǫ/σ
2
ǫ , pǫ) of Stokes equa-

tion on the periodic problems with cell size ǫ can be shown to converge to the solution

of the Darcy problem: find (v, p) ∈ [H1(Ω)]d × L2(Ω)/R such that:
{

νM0v +∇p = ρg

∇ · v = 0
[3]
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with appropriate boundary conditions. The tensor M0 is the same as in the previous

section. The scaling of vǫ by σ2
ǫ should be understood in the sense that, for a small

enough ǫ, the Stokes problem for vǫ really gives the same solution as Darcy’s law with

a coefficient νM0/σ
2
ǫ .

Darcy’s law is the relation of choice for the modeling of filtration of an incom-

pressible fluid through porous media. As for the Stokes case, all inertial terms will be

neglected here, although doing otherwise is possible (Bear et al., 1999). Note that this

law is usually introduced in terms of the specific discharge q = Φv and the piezomet-

ric head h = z+p/ρg, where Φ is the volumetric porosity, defined as the ratio between

the volume of void space and the total volume of the porous medium, z is the altitude

of the considered point, and g is the (scalar) acceleration of gravity (Darcy, 1856):

find (q, h) ∈ [H1(Ω)]d × L2(Ω)/R such that:

{

q = −K∇h

∇ · q = 0
[4]

where K is the permeability (in units of velocity). Simple algebra shows that this

formalism is the same as previously, with νM0/σ
2
ǫ = (ρgΦ/K)I, where I is the

identity tensor.

Roughly, the permeability describes how easily a fluid flows through a medium,

and its value depends on both the fluid and the medium. Considering the particular

case when M0 = M0I, and using the definition of Φ = 1−αa3ǫ/ǫ
3 = (σ2

ǫ −αa2ǫ)/σ
2
ǫ

in 3D, with α some proportionality constant depending on the shape of the inclusion

(for example α = 4π/3 for spherical inclusions), one gets

K =
1

M0

ρg

ν
Φσ2

ǫ =
1

M0

ρg

ν
(σ2

ǫ − αa2ǫ). [5]

In the particular case when aǫ = O(ǫ), which indeed yields the Darcy limit σ = 0,

we have σǫ = O(ǫ2), and we retrieve the analysis of (Hubbert, 1957), obtained from

experimental evidence and dimensionality considerations:

K = N
ρg

ν
ǫ2, [6]

where N is a dimensionless factor of proportionality only related to the shape of the

passages in the porous medium through which the flow occurs.

2.1.4. Coupling methods for erosion problems and proposed approach

The problem that we consider here is that of erosion in a domain Ω ∈ R
3. That

domain is subdivided in a soil domain Ωs, in which there are both soil particles and

fluid, and a fluid domain Ωf , where there is only fluid. We assume that Ωs ∪ Ωf = Ω
and Ωs ∩ Ωf = ∅. The fluid domain may be either a cavity or an open area, as

in the case of floods for example. Only the fully saturated case is considered for

the soil domain. The interface between Ωs and Ωf , denoted Γ, is assumed to be a
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discontinuity in the properties, and to be a purely geometrical interface in the sense

that it is not attached to any material particle. Indeed, as erosion takes place, this

interface evolves. We assume that the quantity of eroded material in the carrier fluid

is too small to modify its properties, so that the erosion is only observed through the

evolution of the interface.

In these problems of erosion, the open flow is naturally modeled using Stokes

equations, while the flow through the porous medium is more often considered through

Darcy’s law. It is then necessary to design a method for the coupling of these two

mathematically heterogeneous equations. This has been investigated by many re-

searchers (Jäger et al., 1996; Discacciati et al., 2009)), with difficulties of a rather

mathematical or numerical order. Hypotheses need to be introduced in order for the

coupled problem to be solvable. In some cases, these hypotheses simplify the prob-

lem greatly and provide (Robin-like) boundary conditions on the Stokes flow (Jäger

et al., 1996; Bonelli et al., 2008), rather than a fully coupled problem. However, the

physical justification of these hypotheses is sometimes arguable.

We investigate in this paper a different approach, in which the models on each

of the two subdomains are similar, but possibly with coefficients varying by several

orders of magnitude. Indeed, in the context of homogenization as exposed above,

the quantities ǫ and aǫ are always made to tend to zero. However, in applications, the

real size of the heterogeneities is always finite. Hence the conclusions that were drawn

about the three regimes of fluid flow through a porous medium (Darcy’s law for σ = 0,

Brinkman flow for 0 < σ < +∞, and Stokes flow for σ = +∞) are really about limit

problems. We choose here to use Brinkman equations on both sides of the interface,

but with very different orders of magnitude for the coefficient νM0/σ
2. Choosing a

small σ on one side would correspond to Darcy’s law, while a large σ on the other

side would lead to Stokes flow. Note that in such an approach, the heterogeneities are

never modeled, and the quantities that are derived are really similar to those of Darcy’s

law (in particular, the pressure and velocity fields are extended within the matrix of

the porous medium). Note also that a very mathematical reading of this approach is

possible (Angot et al., 1999; Golay et al., 2010), where the coupling of a Stokes flow

with a Darcy’s law (with a Neumann boundary condition on the pressure) is an L2

penalization of that Stokes flow, and the coupling with a Brinkman equation is an H1

penalization.

A similar approach for an erosion problem was already considered in (Cottereau

et al., 2010), but with Darcy’s law rather than Brinkman equations on both sides of

the interface. The permeability for the open flow was taken 1000 times larger than the

permeability through the soil. In (Vennat et al., 2010), the authors considered Stokes

equations on both sides of an interface between an open flow and the flow through a

porous medium, and selected the viscosity in the porous medium to be much larger

than that in the open area. Although the approach that they consider is similar in spirit

to the one that we advocate here, the fact that the viscosities should be different does

not appear in the homogenization process that we have described.
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2.2. Modeling of erosion

Several models for surface erosion of cohesive soils under axial and radial flow

conditions have been proposed in the literature (Vardoulakis et al., 1996; Vardoulakis

et al., 2001; Foster et al., 2001; Wan et al., 2004a; Wang et al., 2004; Papamichos

et al., 2005). We describe here two models of flow erosion, designed respectively

for flows parallel and normal to the surface that is being eroded. The former type

of model appears much more often, due to its importance in the creation of gullies

and rills, which is an important issue for agriculture in particular (see (Knapen et
al., 2007) for a general review). Models dealing with the erosion of a surface under a

normal flow are more scarce, and related to problems of the oil industry (Vardoulakis

et al., 1996; Vardoulakis et al., 2001). Note that in all the models we discuss here,

sedimentation and deposition processes are neglected, and the flows are assumed to

be dilute.

Starting with models for perpendicular flows, the most widely used describes the

rate of erosion per surface area ǫ̇ (sometimes denoted Dc) as proportional to the hy-

draulic shear stress τ :

ǫ̇ = Kc(|τ | − τcr), [7]

where Kc is the coefficient of erosion, or erodibility rate (with values ranging from

10−1 to 10−6 s.m−1 (Wan et al., 2004a)) and τcr is a critical shear stress (with values

ranging from 6 to 160 N.m−2 (Wan et al., 2004b)), both material-dependent. This

leads to an evolution of the interface with the following normal velocity:

vn(x, t) =
ǫ̇

ρs
=

Kc

ρs
(|τ | − τcr). [8]

Other models replace the shear stress by the stream power as the controlling pa-

rameter but experimental evidence seems to indicate that the shear force model is

appropriate, both for laboratory and in situ cases (Giménez et al., 2002). More refined

models try to include the influence of the sediments detached from the soil (see for

example (Woodward, 1999; Bonelli et al., 2006; Brivois et al., 2007)), or consider

probabilistic models for the erosion factors (Sidorchuk, 2005), however it remains

unclear whether the alternatives they provide are truly required with respect to the

simpler model of equation [7]. Following (Wan et al., 2004a; Knapen et al., 2007),

an approximation can be used to derive the hydraulic shear stress as a function of the

gradient of the hydraulic head,

τ = ρwgℓ0∇h(x, t), [9]

where ℓ0 = 1 m in 2D problems. This finally leads to a normal velocity for the

cavity-soil interface:

vn(x, t) =
Kc

ρs
(ρwgℓ0|∇h(x, t)| − τcr) , [10]
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where ρs is the density of the soil material.

In the case of an erosion taking place along the axis of the flow, it is not reasonable

to use the shear stress as a controlling parameter for erosion. Following (Vardoulakis

et al., 1996; Wang et al., 2004), we get a linear relation between the rate of erosion

per surface area and the norm of the gradient of the hydraulic head ∇h, or the fluid

velocity v, in the form

vn(x, t) =
ǫ̇

ρs
= λ|∇h| = λ′|v|, [11]

where λ or λ′ are proportionality coefficients, that would have to be determined ex-

perimentally. If we neglect τcr in equation [10], then the two equations for the normal

velocity have the same form (although derived for different origins), but with different

proportionality coefficients a priori. As the real flow going through an interface is

probably in between that of a normal incidence and grazing incidence, we will con-

sider in all cases a model for the normal velocity as in Eq. [11], with the additional

hypothesis that the proportionality coefficient is the same for all incidences. A more

refined model would require the identification of the coefficient as a function of the

angle of incidence.

3. Numerical description: level-sets and the XFE+ method

In this section, we present the parameterization of the interface Γ between the soil

and the open fluid, using a level-set function, and the way erosion is implemented

in that context, using the Hamilton-Jacobi equation. This approach has already been

used for the modeling of erosion (Cottereau et al., 2010; Golay et al., 2010). We

then describe a new numerical method, similar to the XFE method, and called XFE+

method, that improves the accuracy of the approximate solution, both in terms of

velocity, and gradient of velocity close to the interface.

3.1. The level-set description

As stated in section 2.1.4, the two subdomains Ωs and Ωf are separated by an

interface Γ. This interface evolves in time with a normal velocity vn(x, t). Note that

the definition of this velocity field implies the choice of an "interior" and "exterior".

The main idea of the level-set approach is to consider a function, defined on the

entire domain of interest, with values that depend on the position in one phase or

the other. The most common approach consists in defining the level-set function Φ
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as the distance function to the interface, with the sign indicating the subdomain. In

mathematical terms, it is defined by



















|Φ(x)| = ℓ(x)

Φ(x) > 0 x ∈ Ωs

Φ(x) < 0 x ∈ Ωf

Φ(x) = 0 x ∈ Γ

, [12]

where ℓ(x) indicates the euclidian distance from point x to the closest point of curve

Φ = 0. Hence, the level-set function is defined in a space with a higher dimension than

the interface it attempts to parameterize. However, the additional dimension allows for

an increased smoothness of the function, which can hence be more easily manipulated.

Further, the level-set description of the interface fits properly in a FE context because

the function Φ may be interpolated using the same mesh. This allows describing

arbitrary interfaces, not restricted to contain the mesh nodes, with an accuracy and

regularity up to the resolution of the FE discretization.

3.2. The Hamilton-Jacobi equation

As the phases of the model evolve in time, so does the interface and its level-set

description. The evolution of the level-set function Φ is determined by the normal

velocity of the interface at every point, vn(x, t). This front velocity is considered to

be positive if the interface advances towards the positive values of Φ, that is in the

direction of the unit normal vector n = ∇Φ/|∇Φ|. The transport equation for Φ is

the Hamilton-Jacobi equation, and its derivation, given the front velocity vn(x, t), is

sketched below.

Let us consider a point x(t) following the interface in its movement. Thus, at every

time t,

Φ(x(t), t) = 0. [13]

The time derivative of this equation yields

∂Φ

∂t
+∇Φ · ∂x

∂t
= 0. [14]

Recalling that the front velocity is precisely vn(x, t) = n · ∂x/∂t, with n =
∇Φ/|∇Φ|, the second term in the left-hand-side of the previous equation is replaced

by vn(x, t)|∇Φ|. This results in the Hamilton-Jacobi equation:

∂Φ

∂t
+ vn(x, t)|∇Φ| = 0. [15]

Note that, to this point, no hypothesis has been made on the form of the normal

velocity field vn. This equation is therefore compatible with different physical models
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of the evolution of the interface. Conversely, the only necessary modification for

passing from one model to another is to change the form of the normal velocity. This

property was stressed upon in (Cottereau et al., 2010).

3.3. The XFE+ method

3.3.1. Introduction

In erosion problems, the continuity of the fluxes ν∇sv ·n, along with the disconti-

nuity of the parameter ν implies a discontinuity of the gradient of the velocity. Hence

the only possibility for a FE method to capture adequately the continuity of the fluxes

through the interface is by creating a mesh that exactly matches the interface. In that

case, the gradients of the solution can be discontinuous between sides of the interface

and the fluxes possibly continuous.

However, in many cases, this constraint on the meshing can be an important dif-

ficulty. In particular, when considering erosion problems for which the interface

evolves, this would mean remeshing fully at each time step. Also, when considering

complex geometries, for example arising in mechanics of material when using digital-

ized images of microstructures, it is much simpler to provide a level set definition of

an interface, than to create a mesh exactly fitting it.

It is then possible, within a FE framework , to use the information about the posi-

tion of the interface to enrich the functional basis in which the approximate solution

is sought. This approach leads to the XFE method, in which one adds functions that

have a discontinuous gradient over the interface. Thanks to these additional degrees of

freedom, the XFE method is theoretically able to match the continuity of fluxes over

the interface. However, as will be shown in the application of section 4.1, this is not

necessarily the case, because these gradient-discontinuous functions do not provide

full freedom in fixing the value of the gradients independently on each side of the

interface.

We therefore propose a new method, that enforces explicitly, and in the context of

a weak formulation, the continuity of fluxes over the interface. We call this method

the XFE+ method, because it uses the same functional basis as the XFE method, but

is a mixed formulation with an additional equation enforcing the continuity of fluxes.

Only the Brinkman equations are considered below, but the extension to Stokes and

Darcy flows is obtained by obvious simplification.

It is important to remember that, in erosion problems (see section 2.2), the most

important quantity to be evaluated is the gradient of the solution, because it drives

the erosion process. It is therefore very important in these applications that it be

well evaluated. This remark is what justifies the discussion in this section, and the

subsequent numerical developments.
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3.3.2. FE and XFE methods

Starting from the strong formulation of the Brinkman equations in equation [2],

the corresponding weak formulation is: find (v, p) ∈ [H1
0 (Ω)]

d × L2
0(Ω), such that:

∫

Ω

ν∇sv : ∇swdx+

∫

Ω

ν

σ2
M0v ·wdx−

∫

Ω

p∇ ·wdx =

∫

Ω

ρg ·wdx, [16]

and

−
∫

Ω

q∇ · udx = 0, [17]

for all (w, q) ∈ [H1
0 (Ω)]

d × L2
0(Ω). The functional spaces are defined by H1

0 (Ω) =
{v ∈ H1(Ω), v|∂Ω = 0}, in the case of pure Dirichlet boundary conditions, and

L2
0(Ω) = {p ∈ L2(Ω),

∫

Ω
pdx = p0}. In the classical FE method, one would choose

a mesh of the domain Ω, and (for example) linear functions of approximation on each

element of the mesh. If the mesh does not follow the interface Γ, which is desirable

in particular when that interface is evolving, then it is impossible to represent the

theoretical discontinuity of the gradient of the solution v arising from the assumed

continuity of the fluxes ν∇sv.

The XFE method (Chessa et al., 2003; Moës et al., 2003; Legrain et al., 2008;

Zlotnik et al., 2009) proposes to add to the approximation basis functions that have

a discontinuous gradient on the interface Γ. In terms of global norm of the error, the

XFE method behaves much better than the classical FE method, as will be illustrated

on an example in section 4.1. However, for the evaluation of the local fluxes on the

interface, it does not behave necessarily so well. Indeed, the continuity of fluxes

is hidden in the continuous form of the weak formulation [16] but is not enforced

anywhere once using the discretized weak formulation.

3.3.3. XFE+ method

Trying now to enforce explicitely the continuity of the fluxes over Γ, and using

a Lagrange formulation for instance, one gets the modified weak formulation: find

(v, p, λ) ∈ [H1
0 (Ω)]

d × L2
0(Ω)× [H1

0 (Ω)]
d such that:

∫

Ω

ν∇sv : ∇swdx−
∫

Γ

Jν∇sλ · nK ·wdx+

∫

Ω

ν

σ2
M0v ·wdx

−
∫

Ω

p∇ ·wdx =

∫

Ω

ρg ·wdx, [18]

−
∫

Ω

q∇ · udx = 0, [19]

and

−
∫

Γ

Jν∇sv · nK · µdx = 0, [20]
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for all (w, q, µ) ∈ [H1
0 (Ω)]

d×L2
0(Ω)× [H1

0 (Ω)]
d. In these equations, the jumps over

Γ are represented with a double bracket:

JαK = α|Ω1
− α|Ω2

. [21]

As the functional space that is used here is constraining the solution more than in

the XFE case, it is expected that the solution will be worse in terms of energy norm.

However, in terms of local fluxes close to the interface, thanks to the enforcement of

the continuity of the fluxes, which the exact solution verifies, it is expected that the

XFE+ solution be better than the XFE one. Indeed, these two statements are shown to

hold true on the example in section 4.1.

More considerations about this new method are given in (Cordero et al., 2010; Díez

et al., 2010). In particular, the stability of the mixed formulation is proved in the mixed

setting above. The applications that we present in the next section are based either on

Darcy’s law for both the open fluid and the porous medium, or on Stokes equations

for both. The corresponding weak formulations for these two cases can be deduced

straightforwardly from those above, and the results are qualitatively the same in the

Brinkman equations case.

4. Applications

We now show two examples of application of the model presented in this paper.

First, we discuss a purely numerical example in 2D, where we illustrate the lack of

accuracy of both the FE and the XFE methods in evaluating the fluxes on the soil-

fluid interface, for a Darcy flow on both sides of the interface. Then we present a 3D

application of an actual erosion problem, but with Stokes equations on both sides of

the interface rather than Brinkman equations. No example will be shown here that uses

Brinkman equations, because the corresponding software is still under development.

These results will be presented elsewhere. This application is very similar to the one

presented in (Golay et al., 2010), but the numerical solution is much faster, because

our numerical scheme allows to use a very coarse mesh.

4.1. Inaccuracy issues in the evaluation of the fluxes at the interface (2D)

This first example aims at illustrating the lack of accuracy of both the FE and

XFE methods in evaluating the fluxes at the interface between two subdomains with

different material parameters. As it is of a mathematical nature, and for simplicity, all

parameters and variables are here dimensionless, although we still refer to them with

their physical names.

Let us consider the open disc Ω ∈ R
2 centered on (0, 0), and with radius 1. It

is split into two concentric subdomains Ω1 (disc) and Ω2 (ring) at radius 1/2, with

Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅. We use cylindrical coordinates (r, θ), and define
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the global parameter ν on Ω by ν((r, θ) ∈ Ω1) = 1000 and ν((r, θ) ∈ Ω2) = 1. We

finally consider the following problem: find v ∈ L2(Ω) such that

{

ν∆v + 4 = 0 , in Ω

v = 0 , at r = 1
[22]

with continuity of velocity and normal flux at the interface. The exact solution vex of

that problem is given by

{

vex(r ≤ r0) = r2/1000− 1 + 999/4000,

vex(r ≥ r0) = r2 − 1.
[23]

The value of the flux, equal in both Ω1 and Ω2 is

ν∇v = 2rer. [24]

We compute the approximate solution to this problem using three different meshes

(see figure 2) and three different methods: the FE method, the classical XFE method,

and the XFE+ method.

(a) N=92 (b) N=392 (c) N=1568

Figure 2. Sequence of meshes used for the numerical simulations. N indicates the
number of (triangular) elements in each mesh

In figure 3, we present, for each mesh and each method, element maps of the

normalized error in norm H1, defined by

ek =
‖vH − vex‖H1,Tk

‖vex‖H1,Tk

, [25]

with ‖v‖2H1,T =
∫

T
∇v · ∇v dx the square of the H1 norm of function v over domain

T . The comparison between the three methods shows that there is an important in-

crease of accuracy when switching from the FE method to the XFE method. Indeed,

the addition in the functional basis for the approximate solution of an element with

discontinuity of the gradient at the interface apparently to allows to capture the fluxes

perfectly in that location. Hence in both the XFE and the XFE+ methods, the major
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error (normalized) arises from the central point. However, the theoretical improve-

ment of the gradients at the interface does not seem to be observable on these maps,

except slightly for the first mesh. The evolution of the global error in H1 norm

eΩ =
‖vH − vex‖H1,Ω

‖vex‖H1,Ω
=

√

3000

7001π
‖vH − vex‖H1,Ω, [26]

is also plotted in figure 4 (left figure), and yields the same conclusion that XFE and

XFE+ seem equivalent.

(a) FE, Mesh 1 (b) FE, Mesh 2 (c) FE, Mesh 3

(d) XFE, Mesh 1 (e) XFE, Mesh 2 (f) XFE, Mesh 3

(g) XFE+, Mesh 1 (h) XFE+, Mesh 2 (i) XFE+, Mesh 3

Figure 3. Elemental contributions to the normalized error in norm H1, on three dif-
ferent meshes and with the three different numerical methods, FE, XFE, and XFE+.
The dashed circle indicates the position of the interval. The color scales are the same
for all methods and one given mesh but is different for different meshes

However, on figure 4, we observe directly the evolution of the normalized error in

H1/2 norm over the interface. This error is defined as

eΓ =
‖vH − vex‖H1/2,Γ

‖vex‖H1/2,Γ

=
ν√
π
‖vH − vex‖H1/2,Γ, [27]

with ‖v‖2
H1/2,L

=
∫

L
∇v · ∇v dx the square of the H1/2 norm of function v over the

boundary L. As the functions vH and vex are discontinuous over the interface Γ, we
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compute two different errors: one (center plot) using the values of the functions on the

side of Ω1, eΓ,1, and one (right plot) using the values on the side of Ω2, eΓ,2. It can be

observed that, although the evaluation of the fluxes was well performed considering

the Ω2 side (on which ν is the smallest), this is not so on the other side, where the

fluxes are very badly evaluated by the XFE method, and better by the XFE+ method.

In the XFE method, the gradients of the velocity are more poorly evaluated on the side

where the parameter ν is larger.

Figure 4. Convergence of the normalized error in H1 norm (left) over Ω and in H1/2

norm over Γ1 (center) or Γ2 (right), in terms of the number of degrees of freedom of
the mesh, for the FE (dash-dotted), the XFE (dashed line, confounded with the solid
line on the left and right plots), and the XFE+ (solid line) methods

Hence, as expected and described in section 3.3, the FEM behaves poorly both in

terms of global energy norm and local fluxes, the XFE method behaves better in terms

of energy norm and as poorly in terms of local fluxes, and the XFE+ method behaves

better in terms of local fluxes. Also, in terms of local fluxes, the XFE method behaves

better than the XFE+ method, but, as can be seen on the example, very slightly so. On

the other hand, the improvement in terms of local fluxes is very sensible.

4.2. Erosion around a 3D bridge pier

We consider here a 3D example very similar to the one described in (Golay et
al., 2010) about the evaluation of erosion around a bridge pier. We therefore consider

a 3D box, with water on the upper side, and a water-filled soil in the lower part.

Stokes equations are used, both for the open water and the flow through the porous

soil. The normal velocity is imposed on two of the sides, while wall conditions are

imposed on the rest of the sides. This creates a flow of water through the system,

which accelerates around the pier, because of the decreased area. A level-set was

used to represent the interface between the soil and the open flow, while the pier was

explicitly meshed (hence, the pier is taken as a boundary to the domain). A coarse

mesh of 1989 nodes and 8858 tetrahedra was used and the simulation ran in 1h30

on a basic dual-core laptop. This is much less than the 2 days reported in (Golay

et al., 2010), and this gain is obviously related to the important coarsening of the

mesh (200 times less degrees of freedom). Although it is hard to compare the two
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computational methods very precisely because some data is missing in the paper, our

method appears very promising for 3D applications.

(a) t1 (b) t2

(c) t3 (d) t4

(e) t5 (f) t6

Figure 5. Evolution of the fluid-soil interface with time for the pier example. The pier
is represented by the dark cylinder, while the greyish surface is the interface
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5. Conclusions

We have presented in this paper a numerical model of erosion of a porous medium

at the interface with an open flow. It is based on two ingredients: the use of Brinkman

equations for both the open flow and the flow through the porous medium, with very

different mechanical parameters on the two sides of the interface, and a new XFE+

method to evaluate the shear force at the interface accurately. Although the results,

in terms of both efficiency and accuracy are very promising, it is now necessary to

finalize the implementation of the Brinkman equations (the examples shown here were

with Darcy’s law and Stokes equations).
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