G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes, Archive for Rational Mechanics and Analysis, vol.20, issue.2, pp.3-3, 1991.
DOI : 10.1007/BF00375065

G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes II: Non-critical sizes of the holes for a volume distribution and a surface distribution of holes, Archive for Rational Mechanics and Analysis, vol.4, issue.3, pp.3-3, 1991.
DOI : 10.1007/BF00375066

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

J. Bear and Y. Bachmat, Introduction to modeling of transport phenomena in porous media, Theory and Applications of Transport in Porous Media, p.136, 1999.
DOI : 10.1007/978-94-009-1926-6

S. Bonelli and O. Brivois, The scaling law in the hole erosion test with a constant pressure drop, International Journal for Numerical and Analytical Methods in Geomechanics, vol.80, issue.2, pp.13-13, 2008.
DOI : 10.1002/nag.683

URL : https://hal.archives-ouvertes.fr/hal-00305364

S. Bonelli, O. Brivois, R. Borghi, and N. Benahmed, On the modelling of piping erosion, Comptes Rendus M??canique, vol.334, issue.8-9, pp.8-8, 2006.
DOI : 10.1016/j.crme.2006.07.003

O. Brivois, S. Bonelli, and R. Borghi, Soil erosion in the boundary layer flow along a slope: a theoretical study, European Journal of Mechanics - B/Fluids, vol.26, issue.6, pp.707-719, 2007.
DOI : 10.1016/j.euromechflu.2007.03.006

URL : https://hal.archives-ouvertes.fr/hal-00305325

M. Burger, A level set method for inverse problems, Inverse Problems, vol.17, issue.5, pp.1327-1355, 2001.
DOI : 10.1088/0266-5611/17/5/307

M. Burger and S. J. Osher, A survey on level set methods for inverse problems and optimal design, European Journal of Applied Mathematics, vol.16, issue.2, pp.2-2, 2005.
DOI : 10.1017/S0956792505006182

J. Chessa and T. Belytschko, An Extended Finite Element Method for Two-Phase Fluids, Journal of Applied Mechanics, vol.70, issue.1, pp.1-1, 2003.
DOI : 10.1115/1.1526599

F. Cordero and P. Díez, XFEM+: una modificación de XFEM para mejorar la precisión de los flujos locales en problemas de difusión con conductividades muy distintas, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, pp.2-2, 2010.

R. Cottereau, P. Díez, and A. Huerta, Modeling, with a unified level-set representation, of the expansion of a hollow in the ground under different physical phenomena, XFEM+ method for modeling of erosion 1205, pp.315-327, 2010.
DOI : 10.1007/s00466-009-0443-y

URL : https://hal.archives-ouvertes.fr/hal-00709536

J. Crank, Free and moving boundary problems, 1984.

H. Darcy, Les Fontaines Publiques de la Ville de Dijon, p.1856

P. Díez, R. Cottereau, and F. Cordero, XFEM+: a modification of XFEM to improve on the accuracy of local fluxes in diffusion problems with very different conductivities, 2010.

M. Discacciati and A. Quarteroni, Navier-Stokes/darcy coupling: modeling, analysis, and numerical approximation, Revista Matem??tica Complutense, vol.22, issue.2, pp.2-2, 2009.
DOI : 10.5209/rev_REMA.2009.v22.n2.16263

M. Foster and R. Fell, Assessing Embankment Dam Filters That Do Not Satisfy Design Criteria, Journal of Geotechnical and Geoenvironmental Engineering, vol.127, issue.5, pp.398-407, 2001.
DOI : 10.1061/(ASCE)1090-0241(2001)127:5(398)

R. Giménez and G. Govers, Flow Detachment by Concentrated Flow on Smooth and Irregular Beds, Soil Science Society of America Journal, vol.66, issue.5, pp.1475-1483, 2002.
DOI : 10.2136/sssaj2002.1475

F. Golay, D. Lachouette, S. Bonelli, and P. Seppecher, Interfacial erosion: A three-dimensional numerical model, Comptes Rendus M??canique, vol.338, issue.6, pp.6-6, 2010.
DOI : 10.1016/j.crme.2010.06.001

URL : https://hal.archives-ouvertes.fr/hal-01281027

W. Gorczyk, T. V. Gerya, J. A. Connolly, D. A. Yuen, and M. Rudolph, Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography, Geochemistry, Geophysics, Geosystems, vol.146, issue.1-2, pp.5-5, 2006.
DOI : 10.1029/2005GC001075

M. K. Hubbert, DARCY'S LAW AND THE FIELD EQUATIONS OF THE FLOW OF UNDERGROUND FLUIDS, International Association of Scientific Hydrology. Bulletin, vol.37, issue.1, pp.1-1, 1957.
DOI : 10.1086/624930

K. Ito, K. Kunisch, and Z. Li, Level-set function approach to an inverse interface problem, Inverse Problems, vol.17, issue.5, pp.5-5, 2001.
DOI : 10.1088/0266-5611/17/5/301

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Jäger and A. Mikeli´cmikeli´c, On the boundary conditions at the interface between a porous medium and a free fluid, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.12, pp.403-465, 1996.

Y. Jan, A cell-by-cell thermally driven mushy cell tracking algorithm for phase-change problems, Computational Mechanics, vol.40, pp.2-2, 2007.

K. H. Karlsen, K. Lie, and N. H. Risebro, A fast marching method for reservoir simulation, Computational Geosciences, vol.4, issue.2, pp.185-206, 2000.
DOI : 10.1023/A:1011564017218

A. Knapen, J. Poesen, G. Govers, G. Gyssels, and J. Nachtergaele, Resistance of soils to concentrated flow erosion: A review, Earth-Science Reviews, vol.80, issue.1-2, pp.1-1, 2007.
DOI : 10.1016/j.earscirev.2006.08.001

G. Legrain, N. Moës, and A. Huerta, Stability of incompressible formulations enriched with X-FEM, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.21-24, pp.21-21, 2008.
DOI : 10.1016/j.cma.2007.08.032

URL : https://hal.archives-ouvertes.fr/hal-01007317

N. Moës, M. Cloirec, P. Cartraud, and J. Remacle, A computational approach to handle complex microstructure geometries, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.28-30, pp.28-28, 2003.
DOI : 10.1016/S0045-7825(03)00346-3

W. Mulder, S. Osher, and J. A. Sethian, Computing interface motion in compressible gas dynamics, Journal of Computational Physics, vol.100, issue.2, pp.2-2, 1992.
DOI : 10.1016/0021-9991(92)90229-R

G. A. Narsilio, O. Buzzi, S. Fityus, T. S. Yun, and D. W. Smith, Upscaling of Navier???Stokes equations in porous media: Theoretical, numerical and experimental approach, Computers and Geotechnics, vol.36, issue.7, pp.1200-1206, 2009.
DOI : 10.1016/j.compgeo.2009.05.006

L. K. Nielsen, H. Li, X. Tai, S. I. Aanonsen, and M. Espedal, Reservoir description using a binary level set model, Computing and Visualization in Science, vol.1, issue.1, 2008.
DOI : 10.1007/s00791-008-0121-1

S. Osher and R. P. Fedkiw, Level Set Methods: An Overview and Some Recent Results, Journal of Computational Physics, vol.169, issue.2, pp.2-2, 2001.
DOI : 10.1006/jcph.2000.6636

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.1-1, 1988.
DOI : 10.1016/0021-9991(88)90002-2

E. Papamichos and I. Vardoulakis, Sand erosion with a porosity diffusion law, Computers and Geotechnics, vol.32, issue.1, pp.47-58, 2005.
DOI : 10.1016/j.compgeo.2004.11.005

J. Rubinstein, On the macroscopic description of slow viscous flow past a random array of spheres, Journal of Statistical Physics, vol.83, issue.5-6, pp.5-5, 1986.
DOI : 10.1007/BF01011910

J. A. Sethian, Level set methods and fast marching methods, 1999.

J. A. Sethian and A. M. Popovici, 3-D traveltime computation using the fast marching method, GEOPHYSICS, vol.64, issue.2, pp.2-2, 1999.
DOI : 10.1190/1.1444558

A. Sidorchuk, Stochastic components in the gully erosion modelling, CATENA, vol.63, issue.2-3, pp.2-2, 2005.
DOI : 10.1016/j.catena.2005.06.007

M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.1-1, 1994.
DOI : 10.1006/jcph.1994.1155

L. Tartar, Non-homogeneous media and vibration theory, Lectures Notes in Physics, Springer, chapter Incompressible fluid flow in a porous medium: convergence of the homogenization process, pp.368-377, 1980.

S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multifluid flows, Journal of Computational Physics, vol.100, pp.1-1, 1992.

P. E. Van-keken, S. D. King, H. Schmeling, U. R. Christensen, D. Neumeister et al., A comparison of methods for the modeling of thermochemical convection, Journal of Geophysical Research: Solid Earth, vol.50, issue.B10, pp.10-10, 1997.
DOI : 10.1029/97JB01353

I. Vardoulakis, P. Papanastasiou, and M. Stavropoulou, Sand erosion in axial flow conditions, Transport in Porous Media, pp.2-2, 2001.

I. Vardoulakis, M. Stavropoulou, and P. Papanastasiou, Hydro-mechanical aspects of the sand production problem, Transport in Porous Media, pp.2-2, 1996.
DOI : 10.1007/BF01143517

E. Vennat, D. Aubry, and M. Degrange, Collagen Fiber Network Infiltration: Permeability and Capillary Infiltration, Transport in Porous Media, pp.3-3, 2010.
DOI : 10.1007/s11242-010-9537-4

URL : https://hal.archives-ouvertes.fr/hal-00516046

C. F. Wan and R. Fell, Investigation of Rate of Erosion of Soils in Embankment Dams, Journal of Geotechnical and Geoenvironmental Engineering, vol.130, issue.4, pp.373-380, 2004.
DOI : 10.1061/(ASCE)1090-0241(2004)130:4(373)

C. F. Wan and R. Fell, Laboratory tests on the rate of piping erosion of soils in embankment dams, Geotechnical Testing Journal, vol.27, pp.3-3, 2004.

J. Wang and R. G. Wan, Computation of sand fluidization phenomena using stabilized finite elements, Finite Elements in Analysis and Design, vol.40, issue.12, pp.12-12, 2004.
DOI : 10.1016/j.finel.2003.10.005

D. E. Woodward, Method to predict cropland ephemeral gully erosion, CATENA, vol.37, issue.3-4, pp.3-3, 1999.
DOI : 10.1016/S0341-8162(99)00028-4

S. Zlotnik and P. Díez, Hierarchical X-FEM for n-phase flow, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.30-32, pp.30-30, 2009.
DOI : 10.1016/j.cma.2009.02.025

S. Zlotnik, P. Díez, M. Fernández, and J. Vergés, Numerical modelling of tectonic plates subduction using X-FEM, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.41-44, pp.41-41, 2007.
DOI : 10.1016/j.cma.2007.04.006

URL : https://digital.csic.es/bitstream/10261/75655/1/accesoRestringido.pdf

S. Zlotnik, M. Fernández, P. Díez, and J. Vergés, Modelling gravitational instabilities: slab breakoff and Rayleigh-Taylor diapirism, Pure and Applied Geophysics, vol.165, pp.1-20, 2008.
DOI : 10.1007/978-3-7643-9964-1_3

URL : http://upcommons.upc.edu/bitstream/2117/8163/3/2008-PAG-ZFDV-blanc.pdf