M. Ainsworth and H. A. Wajid, Dispersive and Dissipative Behavior of the Spectral Element Method, SIAM Journal on Numerical Analysis, vol.47, issue.5, pp.3910-3937, 2009.
DOI : 10.1137/080724976

K. Aki and B. Chouet, Origin of coda waves: Source, attenuation, and scattering effects, Journal of Geophysical Research, vol.73, issue.4, pp.3322-3342, 1975.
DOI : 10.1029/JB080i023p03322

M. Arnst, D. Clouteau, and M. Bonnet, Inversion of probabilistic structural models using measured transfer functions, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.6-8, pp.589-608, 2008.
DOI : 10.1016/j.cma.2007.08.011

P. Basser and S. Pajevic, Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI, Signal Processing, vol.87, issue.2, pp.220-236, 2007.
DOI : 10.1016/j.sigpro.2006.02.050

E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics, vol.188, issue.2, pp.399-433, 2003.
DOI : 10.1016/S0021-9991(03)00184-0

F. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

J. Carcione, Wave fields in real media: wave propagation in anisotropic, anelastic, porous and eletromagnetic media, of Handbook of Geophysical Exploration: Seismic Exploration, 2007.

D. Clouteau and D. Aubry, MODIFICATIONS OF THE GROUND MOTION IN DENSE URBAN AREAS, Journal of Computational Acoustics, vol.09, issue.04, pp.1659-1675, 2001.
DOI : 10.1142/S0218396X01001509

F. Collino and P. Monk, The perfectly matched layer in curvilinear corrdinates, SIAM Journal on Numerical Analysis, vol.19, issue.6, pp.2061-2090, 1998.

A. Collino and C. Tsogka, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, GEOPHYSICS, vol.66, issue.1, pp.294-307, 2000.
DOI : 10.1190/1.1444908

K. Meza-fajardo and A. Papageorgiou, A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis, Bulletin of the Seismological Society of America, vol.98, issue.4, pp.1811-1836, 2008.
DOI : 10.1785/0120070223

G. Festa, Slip imaging by isochron back projection and source dynamics with spectral element methods, 2004.

G. Festa and J. Vilotte, The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics, Geophysical Journal International, vol.161, issue.3, pp.789-812, 2005.
DOI : 10.1111/j.1365-246X.2005.02601.x

F. D. Hastings, J. B. Schneider, and S. L. Broschat, Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation, The Journal of the Acoustical Society of America, vol.100, issue.5, pp.3061-3069, 1996.
DOI : 10.1121/1.417118

K. Helbig, Foundations of anisotropy for exploration seismics, 1994.

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.
DOI : 10.1103/PhysRev.106.620

D. Komatitsch and J. Tromp, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophysical Journal International, vol.154, issue.1, pp.146-153, 2003.
DOI : 10.1046/j.1365-246X.2003.01950.x

URL : https://hal.archives-ouvertes.fr/hal-00669060

E. Larose, Diffusion multiple des ondes sismiques et expériences analogiques en ultrasons, 2003.

Q. H. Liu and J. Tao, The perfectly matched layer for acoustic waves in absorptive media, The Journal of the Acoustical Society of America, vol.102, issue.4, pp.2072-2082, 1997.
DOI : 10.1121/1.419657

L. Margerin, Diffusion multiple des ondesélastiquesondes´ondesélastiques dans la lithosphère, 1998.

L. Margerin, M. Campillo, and B. V. Tiggelen, Monte Carlo simulation of multiple scattering of elastic waves, Journal of Geophysical Research: Solid Earth, vol.83, issue.B4, pp.7873-7892, 2055.
DOI : 10.1029/1999JB900359

G. C. Papanicolaou, L. V. Ryzhik, and J. B. Keller, Stability of the P-to-S energy ratio in the diffusive regime, pp.1107-1115, 1996.

R. Popescu, Stochastic variability of soil properties: data analysis, digital simulation, effect on system behavior, 1995.

L. V. Ryzhik, G. C. Papanicolaou, and J. B. Keller, Transport equations for elastic and other waves in random media, Wave Motion, vol.24, issue.4, pp.327-370, 1996.
DOI : 10.1016/S0165-2125(96)00021-2

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

M. Shinozuka and G. Deodatis, Simulation of Multi-Dimensional Gaussian Stochastic Fields by Spectral Representation, Applied Mechanics Reviews, vol.49, issue.1, pp.29-53, 1996.
DOI : 10.1115/1.3101883

C. Soize, Random matrix theory for modeling uncertainties in computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.1333-1366, 2005.
DOI : 10.1016/j.cma.2004.06.038

URL : https://hal.archives-ouvertes.fr/hal-00686187

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.3-26, 2006.
DOI : 10.1016/j.cma.2004.12.014

URL : https://hal.archives-ouvertes.fr/hal-00686157

Q. Ta, D. Clouteau, and R. Cottereau, Modeling of random anisotropic elastic media and impact on wave propagation, Revue europ??enne de m??canique num??rique, vol.19, issue.1-3, pp.1-3, 2010.
DOI : 10.3166/ejcm.19.241-253

URL : https://hal.archives-ouvertes.fr/hal-00709537

F. L. Teixera and W. C. Chew, Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates, IEEE Microwave and Guided Wave Letters, vol.7, issue.11, pp.371-374, 1997.
DOI : 10.1109/75.641424

L. Vernik and X. Liu, Velocity anisotropy in shales: A petrophysical study, GEOPHYSICS, vol.62, issue.2, pp.521-532, 1997.
DOI : 10.1190/1.1444162