Optimizing plant growth model parameters for genetic selection based on QTL mapping

Abstract : An increasing interest is given to the potential benefits of introducing ecophysiological knowledge in breeding programs. Indeed, crop models provide powerful tools to predict phenotypic traits from new genotypes under untested environmental conditions. But, until now, few attempts have been undertaken to bridge the gap from genes to phenotype with a chain of functional processes. In this paper, we propose a framework for simulating plant growth from its genotype. Thus the genetic correlations between the parameters can be taken into consideration when optimization processes are used to define ideotypes based on model parameters. The example of virtual maize growing under constant environmental conditions is presented using the functional-structural model GreenLab.
Type de document :
Communication dans un congrès
Fourcaud Thierry, Zhang XiaoPeng. Plant Growth Modeling, Simulation, Visualization and applications, Nov 2006, Beijing, China. IEEE Computer Society Press, pp.16-21, 2006
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-ecp.archives-ouvertes.fr/hal-00829810
Contributeur : Veronique Letort <>
Soumis le : lundi 3 juin 2013 - 19:20:40
Dernière modification le : jeudi 29 mars 2018 - 13:36:01
Document(s) archivé(s) le : mercredi 4 septembre 2013 - 04:15:13

Fichier

Letort-QTLoptim_submitted.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00829810, version 1

Citation

Veronique Letort, Paul Mahe, Paul-Henry Cournède, P. De Reffye, Brigitte Courtois. Optimizing plant growth model parameters for genetic selection based on QTL mapping. Fourcaud Thierry, Zhang XiaoPeng. Plant Growth Modeling, Simulation, Visualization and applications, Nov 2006, Beijing, China. IEEE Computer Society Press, pp.16-21, 2006. 〈hal-00829810〉

Partager

Métriques

Consultations de la notice

325

Téléchargements de fichiers

313