Good Location, Terrible Food: Detecting Feature Sentiment in User-Generated Reviews

Abstract : A growing corpus of online informal reviews is generated every day by non-experts, on social networks and blogs, about an unlimited range of products and services. Users do not only express holistic opinions, but often focus on specific features of their interest. The automatic understanding of "what people think" at the feature level can greatly support decision making, both for consumers and producers. In this paper, we present an approach to feature-level sentiment detection that integrates natural language processing with statistical techniques, in order to extract users' opinions about specific features of products and services from usergenerated reviews. First, we extract domain features, and each review is modelled as a lexical dependency graph. Second, for each review, we estimate the polarity relative to the features by leveraging the syntactic dependencies between the terms. The approach is evaluated against a ground truth consisting of set of usergenerated reviews, manually annotated by 39 human subjects and available online, showing its human-like ability to capture feature-level opinions.
Type de document :
Article dans une revue
International Journal of Social Network Analysis and Mining (SNAM), 2013, pp.1-16
Liste complète des métadonnées

Littérature citée [59 références]  Voir  Masquer  Télécharger

https://hal-ecp.archives-ouvertes.fr/hal-00830560
Contributeur : Mario Cataldi <>
Soumis le : mercredi 5 juin 2013 - 12:34:39
Dernière modification le : jeudi 29 mars 2018 - 13:36:01
Document(s) archivé(s) le : vendredi 6 septembre 2013 - 04:11:58

Fichier

template.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00830560, version 1

Collections

Citation

Mario Cataldi, Ballatore Andrea, Tiddi Ilaria, Marie-Aude Aufaure. Good Location, Terrible Food: Detecting Feature Sentiment in User-Generated Reviews. International Journal of Social Network Analysis and Mining (SNAM), 2013, pp.1-16. 〈hal-00830560〉

Partager

Métriques

Consultations de la notice

250

Téléchargements de fichiers

1044