Predicting your next OLAP query based on recent analytical sessions

Abstract : In Business Intelligence systems, users interact with data warehouses by formulating OLAP queries aimed at exploring multidimensional data cubes. Being able to predict the most likely next queries would provide a way to recommend interesting queries to users on the one hand, and could improve the efficiency of OLAP sessions on the other. In particular, query recommendation would proactively guide users in data exploration and improve the quality of their interactive experience. In this paper, we propose a framework to predict the most likely next query and recommend this to the user. Our framework relies on a probabilistic user behavior model built by analyzing previous OLAP sessions and exploiting a query similarity metric. To gain insight in the recommendation precision and on what parameters it depends, we evaluate our approach using different quality assessments.
Type de document :
Communication dans un congrès
Proceedings of the 15th International conference on data warehousing and knowledge discovery (DaWaK 2013), Aug 2013, Prague, Czech Republic. 12 p., 2013, LNCS. 〈10.1007/978-3-642-40131-2_12 〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-ecp.archives-ouvertes.fr/hal-00831716
Contributeur : Yves Vanrompay <>
Soumis le : vendredi 7 juin 2013 - 15:28:50
Dernière modification le : mardi 16 janvier 2018 - 15:09:39
Document(s) archivé(s) le : dimanche 8 septembre 2013 - 04:21:10

Fichier

dawak.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marie-Aude Aufaure, Nicolas Kuchmann Beauger, Patrick Marcel, Stefano Rizzi, Yves Vanrompay. Predicting your next OLAP query based on recent analytical sessions. Proceedings of the 15th International conference on data warehousing and knowledge discovery (DaWaK 2013), Aug 2013, Prague, Czech Republic. 12 p., 2013, LNCS. 〈10.1007/978-3-642-40131-2_12 〉. 〈hal-00831716〉

Partager

Métriques

Consultations de la notice

264

Téléchargements de fichiers

333