A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Materials, vol.134, issue.2, pp.569-581, 2011.
DOI : 10.1038/nmat3064

E. Thostenson, C. Li, and T. Chou, Nanocomposites in context, Composites Science and Technology, vol.65, issue.3-4, pp.491-516, 2005.
DOI : 10.1016/j.compscitech.2004.11.003

B. Reinecke, J. Shan, K. Suabedissen, and A. Cherkasova, On the anisotropic thermal conductivity of magnetorheological suspensions, Journal of Applied Physics, vol.104, issue.2, p.23507, 2008.
DOI : 10.1063/1.2949266

J. Coleman, U. Khan, W. Blau, and Y. Gun-'ko, Small but strong: A review of the mechanical properties of carbon nanotube???polymer composites, Carbon, vol.44, issue.9, pp.1624-1652, 2006.
DOI : 10.1016/j.carbon.2006.02.038

E. Garcia, A. Hart, B. Wardle, and A. Slocum, Fabrication and Nanocompression Testing of Aligned Carbon-Nanotube???Polymer Nanocomposites, Advanced Materials, vol.65, issue.16, pp.2151-2156, 2007.
DOI : 10.1002/adma.200700237

J. Ordonez-miranda and J. Alvarado-gil, Thermal conductivity of nanocomposites with high volume fractions of particles, Composites Science and Technology, vol.72, issue.7, pp.853-857, 2012.
DOI : 10.1016/j.compscitech.2012.02.016

J. Lucio, J. Alvarado-gil, O. Zelaya-angel, and H. Vargas, On the thermal properties of a two-layer system, Physica Status Solidi (a), vol.47, issue.2, pp.695-704, 1995.
DOI : 10.1002/pssa.2211500212

A. Tam, Applications of photoacoustic sensing techniques, Reviews of Modern Physics, vol.58, issue.2, pp.381-431, 1986.
DOI : 10.1103/RevModPhys.58.381

T. Tominaga and K. Ito, Theory of Photoacoustic Measurements of the Thermal Diffusivity of Two-Layer Samples, Japanese Journal of Applied Physics, vol.27, issue.Part 1, No. 12, pp.2392-2397, 1988.
DOI : 10.1143/JJAP.27.2392

J. Ordonez-miranda, R. Yang, and J. Alvarado-gil, A model for the effective thermal conductivity of metal-nonmetal particulate composites, Journal of Applied Physics, vol.111, issue.4, p.44319, 2012.
DOI : 10.1063/1.3688044

W. Tian and R. Yang, Thermal conductivity modeling of compacted nanowire composites, Journal of Applied Physics, vol.101, issue.5
DOI : 10.1063/1.2653777

R. Yang, G. Chen, and M. Dresselhaus, Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction, Physical Review B, vol.72, issue.12, p.125418, 2005.
DOI : 10.1103/PhysRevB.72.125418

R. Yang, G. Chen, and M. Dresselhaus, Thermal Conductivity Modeling of Core???Shell and Tubular Nanowires, Nano Letters, vol.5, issue.6, pp.1111-1115, 2005.
DOI : 10.1021/nl0506498

R. Yang and G. Chen, Thermal conductivity modeling of periodic two-dimensional nanocomposites, Physical Review B, vol.69, issue.19, 2004.
DOI : 10.1103/PhysRevB.69.195316

G. Kim, Thermo-physical responses of polymeric composites tailored by electric field, Composites Science and Technology, vol.65, issue.11-12
DOI : 10.1016/j.compscitech.2005.02.013

J. Ordonez-miranda, R. Yang, and J. Alvarado-gil, The effect of the electron-phonon coupling on the effective thermal conductivity of metal-nonmetal multilayers, Journal of Applied Physics, vol.109, issue.9, pp.94310-094316, 2011.
DOI : 10.1063/1.3585824

A. Majumdar and P. Reddy, Role of electron???phonon coupling in thermal conductance of metal???nonmetal interfaces, Applied Physics Letters, vol.84, issue.23, pp.4768-4770, 2004.
DOI : 10.1063/1.1758301

C. Nan, R. Birringer, D. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, Journal of Applied Physics, vol.81, issue.10, pp.6692-6699, 1997.
DOI : 10.1063/1.365209

G. Milton, The Theory of Composites. Cambridge, 2002.

S. Torquato, Random Heterogeneous Materials, 2001.
DOI : 10.1007/978-1-4757-6355-3

J. Ordonez-miranda, R. Yang, and J. Alvarado-gil, On the thermal conductivity of particulate nanocomposites, Applied Physics Letters, vol.98, issue.23, pp.233111-233113, 2011.
DOI : 10.1063/1.3593387

A. Minnich and G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites, Applied Physics Letters, vol.91, issue.7, pp.73105-073107, 2007.
DOI : 10.1063/1.2771040

J. Ordonez-miranda, R. Yang, and J. Alvarado-gil, A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit, Journal of Applied Physics, vol.114, issue.6, pp.64306-064312, 2013.
DOI : 10.1063/1.4818409

L. Nielsen, The Thermal and Electrical Conductivity of Two-Phase Systems, Industrial & Engineering Chemistry Fundamentals, vol.13, issue.1, pp.17-20, 1974.
DOI : 10.1021/i160049a004

J. Maxwell, A treatise on electricity and magnetism

G. Arfken and H. Weber, Mathematical methods for physicists, Boston, 2005.

S. Yu, B. Park, C. Park, S. Hong, T. Han et al., RTA-Treated Carbon Fiber

D. Hasselman, K. Donaldson, J. Liu, L. Gauckler, and P. Ownby, Thermal Conductivity of a Particulate-Diamond-Reinforced Cordierite Matrix Composite, Journal of the American Ceramic Society, vol.1, issue.8, pp.1757-1760, 1994.
DOI : 10.1111/j.1151-2916.1994.tb07047.x

Z. Lin, L. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Physical Review B, vol.77, issue.7, 2008.
DOI : 10.1103/PhysRevB.77.075133

P. Hopkins, J. Kassebaum, and P. Norris, Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films, Journal of Applied Physics, vol.105, issue.2, pp.23710-023717, 2009.
DOI : 10.1063/1.3068476

T. Lewis and L. Nielsen, Dynamic mechanical properties of particulate-filled composites, Journal of Applied Polymer Science, vol.14, issue.6
DOI : 10.1002/app.1970.070140604

C. Small, Functional equations and how to solve them, 2007.
DOI : 10.1007/978-0-387-48901-8

S. Shenogin, J. Gengler, A. Roy, A. Voevodin, and C. Muratore, Molecular dynamics studies of thermal boundary resistance at carbon???metal interfaces, Scripta Materialia, vol.69, issue.1, pp.100-103, 2013.
DOI : 10.1016/j.scriptamat.2013.02.006