P. T. Shaughnessy, Occupational health risk to nanoparticulate exposure, Environ. Sci.: Processes Impacts, vol.13, issue.5???74, pp.49-62, 2013.
DOI : 10.1021/ar300022h

P. Tandon, A. Heibel, J. Whitmore, N. Kekre, and K. Chithapragada, Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters, Chemical Engineering Science, vol.65, issue.16, pp.4751-4760, 2010.
DOI : 10.1016/j.ces.2010.05.020

K. Leistner, A. Nicolle, and P. D. Costa, Impact of the Catalyst/Soot Ratio on Diesel Soot Oxidation Pathways, Energy & Fuels, vol.26, issue.10, pp.6091-6097, 2012.
DOI : 10.1021/ef301275p

O. Angrill, H. Geitlinger, T. Streibel, R. Suntz, and H. Bockhorn, Influence of exhaust gas recirculation on soot formation in diffusion flames, Proceedings of the Combustion Institute, vol.28, issue.2, pp.2643-2649, 2000.
DOI : 10.1016/S0082-0784(00)80683-9

Y. Wang, G. J. Nathan, Z. T. Alwahabi, K. D. King, K. Ho et al., Effect of a uniform electric field on soot in laminar premixed ethylene/air flames, Combustion and Flame, vol.157, issue.7, pp.1308-1315, 2010.
DOI : 10.1016/j.combustflame.2010.03.001

A. Jocher, H. Pitsch, T. Gomez, and G. Legros, Modification of sooting tendency by magnetic effects, Proceedings of the Combustion Institute, vol.35, issue.1, pp.889-895, 2015.
DOI : 10.1016/j.proci.2014.05.139

URL : https://hal.archives-ouvertes.fr/hal-01459723

C. S. Mcenally and L. D. Pfe?erle, Experimental study of nonfuel hydrocarbons and soot in coflowing partially premixed ethylene/air flames, Combustion and Flame, vol.121, issue.4, pp.575-592, 2000.
DOI : 10.1016/S0010-2180(99)00174-1

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames, Combustion and Flame, vol.138, issue.4, pp.362-372, 2004.
DOI : 10.1016/j.combustflame.2004.04.013

V. Chernov, Q. Zhang, M. J. Thomson, and S. B. Dworkin, Numerical investigation of soot formation mechanisms in partially-premixed ethylene???air co-flow flames, Combustion and Flame, vol.159, issue.9, pp.2789-2798, 2012.
DOI : 10.1016/j.combustflame.2012.02.023

G. Legros, Q. Wang, J. Bonnety, M. Kashif, C. Morin et al., Simultaneous soot temperature and volume fraction measurements in axis-symmetric flames by a two-dimensional modulated absorption/emission technique, Combustion and Flame, vol.162, issue.6, pp.2705-2719, 2015.
DOI : 10.1016/j.combustflame.2015.04.006

URL : https://hal.archives-ouvertes.fr/hal-01459152

F. Liu, K. A. Thomson, and G. J. Smallwood, Soot temperature and volume fraction retrieval from spectrally resolved flame emission measurement in laminar axisymmetric coflow diffusion flames: Effect of self-absorption, Combustion and Flame, vol.160, issue.9, pp.1693-1705, 2013.
DOI : 10.1016/j.combustflame.2013.02.007

H. Zhao, B. Williams, and R. Stone, Measurement of the spatially distributed temperature and soot loadings in a laminar diffusion flame using a Cone-Beam Tomography technique, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.133, pp.136-152, 2014.
DOI : 10.1016/j.jqsrt.2013.07.024

F. Goulay, P. E. Schrader, and H. A. Michelsen, Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence, Applied Physics B, vol.91, issue.3, pp.655-663, 2010.
DOI : 10.1007/s00340-010-4119-2

J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle et al., Examination of wavelength dependent soot optical properties of??diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements, Applied Physics B, vol.1, issue.2, pp.253-271, 2011.
DOI : 10.1007/s00340-011-4416-4

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, vol.51, pp.203-218, 1983.
DOI : 10.1016/0010-2180(83)90099-8

F. Liu, G. Hongsheng, G. J. Smallwood, and ¨. O. Gülder, Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames, Combustion Theory and Modelling, vol.6, issue.2, pp.301-315, 2003.
DOI : 10.1016/S0017-9310(99)00343-9

C. S. Mcenally and L. D. Pfe?erle, Sooting Tendencies of Oxygenated Hydrocarbons in Laboratory-Scale Flames, Environmental Science & Technology, vol.45, issue.6, pp.2498-2503, 2011.
DOI : 10.1021/es103733q

M. Kashif, J. Bonnety, P. Guibert, C. Morin, and G. Legros, Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique, Optics Express, vol.20, issue.27, pp.28742-28751, 2012.
DOI : 10.1364/OE.20.028742.m001

F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, Sensitivity and relative error analyses of soot temperature and??volume fraction determined by two-color LII, Applied Physics B, vol.147, issue.4, pp.623-636, 2009.
DOI : 10.1007/s00340-009-3560-6

N. Wakayama, Effect of a decreasing magnetic field on the flow of nitrogen gas, Chemical Physics Letters, vol.185, issue.5-6, pp.449-451, 1991.
DOI : 10.1016/0009-2614(91)80240-X

E. Yamada, M. Shinoda, H. Yamashita, and K. Kitagawa, Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame, Combustion and Flame, vol.135, issue.4, pp.365-379, 2003.
DOI : 10.1016/j.combustflame.2003.08.005

N. Wakayama, H. Ito, Y. Kuroda, O. Fujita, and K. Ito, Magnetic support of combustion in diffusion flames under microgravity, Combustion and Flame, vol.107, issue.1-2, pp.187-192, 1996.
DOI : 10.1016/0010-2180(96)00053-3

G. Legros and J. L. Torero, Phenomenological model of soot production inside a non-buoyant laminar diffusion flame, Proceedings of the Combustion Institute, vol.35, issue.3, pp.2545-2553, 2015.
DOI : 10.1016/j.proci.2014.05.038

R. J. Twardzik, Apparatus for subjecting hydrocarbon-based fuels to intensified magnetic fields for increasing fuel burning eciency, p.765, 1996.