, Evolution of the gas fraction in a middle plane for different instants during the collapse and later rebounds. Consistent with the experimental observations of Yang et al [41] gas pockets are left behind the jet during the secondary collapse and afterwards. [2] Q. Wang, Non-spherical bubble dynamics of underwater explosions in a compressible fluid, Figure Physics of Fluids, vol.14, issue.257, p.72104, 2013.

T. Fourest, J. Laurens, E. Deletombe, J. Dupas, and M. Arrigoni, Analysis of bubbles dynamics created by Hydrodynamic Ram in confined geometries using the Rayleigh???Plesset equation, International Journal of Impact Engineering, vol.73, pp.66-74, 2014.
DOI : 10.1016/j.ijimpeng.2014.05.008

URL : https://hal.archives-ouvertes.fr/hal-01076071

Q. Wang and K. Manmi, Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound, Physics of Fluids, vol.115, issue.3, p.32104, 2014.
DOI : 10.1109/TUFFC.2002.1041081

V. Coralic and T. , Finite-volume WENO scheme for viscous compressible multicomponent flows, Journal of Computational Physics, vol.274, pp.95-121, 2014.
DOI : 10.1016/j.jcp.2014.06.003

K. Maeda, T. Colonius, W. Kreider, A. Maxwell, and M. Bailey, Modeling and experimental analysis of acoustic cavitation bubble clouds for burst-wave lithotripsy, The Journal of the Acoustical Society of America, vol.140, issue.4, pp.3307-3307, 2016.
DOI : 10.1121/1.4970532

B. Hejazialhosseini, D. Rossinelli, M. Bergdorf, and P. Koumoutsakos, High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions, Journal of Computational Physics, vol.229, issue.22, pp.8364-8383, 2010.
DOI : 10.1016/j.jcp.2010.07.021

K. Shyue and F. Xiao, An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, Journal of Computational Physics, vol.268, pp.326-354, 2014.
DOI : 10.1016/j.jcp.2014.03.010

P. Wesseling, Principles of computational fluid dynamics, 2009.
DOI : 10.1007/978-3-642-05146-3

D. P. Garrick, M. Owkes, and J. D. Regele, A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension, Journal of Computational Physics, vol.339, pp.46-67, 2017.
DOI : 10.1016/j.jcp.2017.03.007

M. O. Abu-al-saud, S. Popinet, and H. A. Tchelepi, A conservative and well-balanced surface tension model, Journal of Computational Physics, vol.371
DOI : 10.1016/j.jcp.2018.02.022

URL : https://hal.archives-ouvertes.fr/hal-01706565

S. Y. Yoon and T. Yabe, The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method, Computer Physics Communications, vol.119, issue.2-3, pp.149-158, 1999.
DOI : 10.1016/S0010-4655(99)00192-7

F. Xiao, Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow, Journal of Computational Physics, vol.195, issue.2, pp.629-654, 2004.
DOI : 10.1016/j.jcp.2003.10.014

N. Kwatra, J. Su, J. T. Grétarsson, and R. Fedkiw, A method for avoiding the acoustic time step restriction in compressible flow, Journal of Computational Physics, vol.228, issue.11, pp.4146-4161, 2009.
DOI : 10.1016/j.jcp.2009.02.027

F. Xiao, R. Akoh, and S. Ii, Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows, Journal of Computational Physics, vol.213, issue.1, pp.31-56, 2006.
DOI : 10.1016/j.jcp.2005.08.002

M. Jemison, M. Sussman, and M. Arienti, Compressible, multiphase semi-implicit method with moment of fluid interface representation, Journal of Computational Physics, vol.279, pp.182-217, 2014.
DOI : 10.1016/j.jcp.2014.09.005

J. Caltagirone, S. Vincent, and C. Caruyer, A multiphase compressible model for the simulation of multiphase flows, Computers & Fluids, vol.50, issue.1, pp.24-34, 2011.
DOI : 10.1016/j.compfluid.2011.06.011

S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, Journal of Computational Physics, vol.228, issue.16, pp.5838-5866, 2009.
DOI : 10.1016/j.jcp.2009.04.042

URL : https://hal.archives-ouvertes.fr/hal-01445445

S. Popinet, A quadtree-adaptive multigrid solver for the Serre???Green???Naghdi equations, Journal of Computational Physics, vol.302, pp.336-358, 2015.
DOI : 10.1016/j.jcp.2015.09.009

URL : https://hal.archives-ouvertes.fr/hal-01163101

D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, and S. Zaleski, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dynamics Research, vol.41, issue.6, p.65001, 2009.
DOI : 10.1088/0169-5983/41/6/065001

URL : https://hal.archives-ouvertes.fr/hal-01445431

G. Tryggvason, R. Scardovelli, and S. Zaleski, Direct numerical simulations of gas?liquid multiphase flows, 2011.
DOI : 10.1016/j.fluiddyn.2005.08.006

J. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, pp.335-354, 1992.
DOI : 10.1016/0021-9991(92)90240-Y

L. Bergamasco and D. Fuster, Oscillation regimes of gas/vapor bubbles, International Journal of Heat and Mass Transfer, vol.112, pp.72-80, 2017.
DOI : 10.1016/j.ijheatmasstransfer.2017.04.082

URL : https://hal.archives-ouvertes.fr/hal-01525867

D. Fuster, C. Dopazo, and G. Hauke, Liquid compressibility effects during the collapse of a single cavitating bubble, The Journal of the Acoustical Society of America, vol.129, issue.1, pp.122-131, 2011.
DOI : 10.1121/1.3502464

URL : https://authors.library.caltech.edu/22909/1/Fuster2011p13052J_Acoust_Soc_Am.pdf

R. Saurel and R. Abgrall, A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows, Journal of Computational Physics, vol.150, issue.2, pp.425-467, 1999.
DOI : 10.1006/jcph.1999.6187

E. Johnsen and T. Colonius, Implementation of WENO schemes in compressible multicomponent flow problems, Journal of Computational Physics, vol.219, issue.2, pp.715-732, 2006.
DOI : 10.1016/j.jcp.2006.04.018

G. D. Weymouth and D. K. Yue, Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids, Journal of Computational Physics, vol.229, issue.8, pp.2853-2865, 2010.
DOI : 10.1016/j.jcp.2009.12.018

J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incompressible navier-stokes equations, Journal of Computational Physics, vol.85, issue.2, pp.257-283, 1989.
DOI : 10.1016/0021-9991(89)90151-4

M. Rudman, A volume-tracking method for incompressible multifluid flows with large density variations, International Journal for Numerical Methods in Fluids, vol.229, issue.2, pp.357-378, 1998.
DOI : 10.1002/(SICI)1097-0363(19980815)28:2<357::AID-FLD750>3.0.CO;2-D

V. , L. Chenadec, and H. Pitsch, A monotonicity preserving conservative sharp interface flow solver for high density ratio two-phase flows, Journal of Computational Physics, vol.249, pp.185-203, 2013.

G. Vaudor, T. Ménard, W. Aniszewski, M. Doring, and A. Berlemont, A consistent mass and momentum flux computation method for two phase flows. Application to atomization process, Computers & Fluids, vol.152, pp.204-216, 2017.
DOI : 10.1016/j.compfluid.2017.04.023

URL : https://hal.archives-ouvertes.fr/hal-01525891

C. E. Brennen, Cavitation and bubble dynamics, 2013.
DOI : 10.1017/CBO9781107338760

URL : https://authors.library.caltech.edu/25017/5/BUBBOOK.pdf

J. Keller and M. Miksis, Bubble oscillations of large amplitude, The Journal of the Acoustical Society of America, vol.68, issue.2, pp.628-633, 1980.
DOI : 10.1121/1.384720

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA095754&Location=U2&doc=GetTRDoc.pdf

A. Tiwari, J. B. Freund, and C. Pantano, A diffuse interface model with immiscibility preservation, Journal of Computational Physics, vol.252, pp.290-309, 2013.
DOI : 10.1016/j.jcp.2013.06.021

URL : http://europepmc.org/articles/pmc3777574?pdf=render

M. Koch, C. Lechner, F. Reuter, K. Köhler, R. Mettin et al., Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM, Computers & Fluids, vol.126, pp.71-90, 2016.
DOI : 10.1016/j.compfluid.2015.11.008

Q. Wang, W. Liu, A. Zhang, and Y. Sui, Bubble dynamics in a compressible liquid in contact with a rigid boundary, Interface Focus, vol.48, issue.5, 2015.
DOI : 10.1007/978-3-642-34297-4_3

URL : http://rsfs.royalsocietypublishing.org/content/royfocus/5/5/20150048.full.pdf

D. Obreschkow, M. Tinguely, N. Dorsaz, P. Kobel, A. D. Bosset et al., Universal Scaling Law for Jets of Collapsing Bubbles, Physical Review Letters, vol.57, issue.20, 2011.
DOI : 10.1103/PhysRevLett.86.4934

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.107.204501

O. Supponen, D. Obreschkow, M. Tinguely, P. Kobel, N. Dorsaz et al., Scaling laws for jets of single cavitation bubbles, Journal of Fluid Mechanics, vol.14, pp.263-293, 2016.
DOI : 10.1017/S0022112000003335

URL : http://arxiv.org/pdf/1703.01088

W. Lauterborn and H. Bolle, Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary, Journal of Fluid Mechanics, vol.94, issue.02, pp.391-399, 1975.
DOI : 10.1115/1.3425571

S. Popinet and S. Zaleski, Bubble collapse near a solid boundary: a numerical study of the influence of viscosity, Journal of Fluid Mechanics, vol.464, pp.137-163, 2002.
DOI : 10.1017/S002211200200856X

URL : https://hal.archives-ouvertes.fr/hal-01445438

Y. X. Yang, Q. X. Wang, and T. Keat, Dynamic features of a laser-induced cavitation bubble near a solid boundary, Ultrasonics Sonochemistry, vol.20, issue.4, pp.1098-1103, 2013.
DOI : 10.1016/j.ultsonch.2013.01.010