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How to take into account local concentration in Ising-based Monte-Carlo: illustration with zirco-
nium hydrides
Paul Eyméoud,Fabienne Ribeiro,Rémy Besson,Guy Tréglia

• We develop a methodology for taking into account local atomic concentration in Ising-basedMonte-Carlo bulk studies,
in the specific case of intermetallics.

• Zirconium hydride studied by Monte-Carlo based on Tight-Binding Ising Model serves as a support for this study.
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ABSTRACT
We present a detailed methodology for treating local concentration dependency of pairwise inter-
actions in Ising-based Monte-Carlo. The procedure is described through the example of interstitial
ordering processes in zirconium hydrides, studied by canonicalMonte-Carlo based on a concentration-
dependent Tight-Binding Ising Model. The path leads to build a phase diagram of hydrogen-vacancy
ordering on interstitial tetrahedral sublattice of face-centered cubic Zr-H.

1. Introduction
Many interatomic energetic models such as Embedded-

Atom Method [1, 2] (EAM), Cluster Expansion Model [3]
(CEM), or its simpler so-called Ising form [4], generally de-
pend on the concentration of atomic species in the consid-
ered alloy or intermetallic. When that kind of concentration-
dependent interatomic potential is used to implement aMonte-
Carlo (MC) scheme, one can choose from two possible rep-
resentations: (i) for all sites of the simulation box, affect the
same concentration, computed by averaging compositions
on the whole simulation box (the global concentration ap-
proach), (ii) for each atomic site of the simulation box, affect
a specific local concentration, depending the atomic neigh-
boring of this site (the local concentration approach).

When interatomic potentials are slowly varyingwith con-
centration, the global concentration approach (i), simpler, is
generally sufficient to reproduce the correct physics for the
considered system [5, 6, 7, 8]. However, in many situations,
the concentration dependency of interatomic potential can
be quite important. In that case, the local concentration (ii)
is often required to correctly reproduce the physical behavior
of the considered system. For instance, Shmakov et al. [9]
have shown that the correct description of Fe-Cu alloys de-
composition kinetics in CEM-basedMonte-Carlo requires to
take into account local concentration dependency of interac-
tions. Similarly, Levesque et al. [10] (resp. Stukowski, Caro
et al. [11, 12]) had to develop a local-concentration depen-
dent pairwise interaction model (resp. EAM) implementing
their Monte-Carlo approach, in order to correctly reproduce
order vs segregation tendency and short-range order param-
eter trend with increasing at%Cr.

This question of taking or not local concentration depen-
dency to reproduce the correct thermodynamics, is all the
more important that in the case of Ising models, concen-
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tration dependency of pairwise interactions can sometimes
be quite strong, with sign changes [13]. Furthermore, us-
ing clustering developments Gonis et al. [14] have demon-
strated that concentration-independent interactions are rigor-
ously valid only for strictly finite systems, such as a nanopar-
ticle, whereas treatment of infinite systems, such as bulk al-
loys, requires an explicit concentration dependency of in-
teractions. In the continuity of previously developed local
concentration methodologies for interatomic potential MC
studies of substitutional binary alloys [9, 10, 15], we propose
here a detailed local concentration methodology for Ising-
based MC studies of intermetallics. The procedure will be
developed through the example of zirconium hydrides inter-
stitial ordering, studied by a Tight-Binding Ising Model [16]
(TBIM).

This article is organized as follows. First, we will briefly
present the system chosen as a support for our study, namely
zirconium hydrides, and the energetic model used for im-
plementing our thermostatistical approach, TBIM. We will
show the necessity, for this particular intermetallic system
treated with this specific energetic model, of introducing the
local concentration dependency of pairwise interactions in
canonical Monte-Carlo Metropolis algorithm [17, 18], in or-
der to correctly reproduce the ordering tendencies. This will
lead us to develop a methodology for the consideration of
local concentration in Monte-Carlo, and we will apply it to
the construction of a phase diagram of hydrogen-vacancy or-
dering on interstitial tetrahedral sublattice of face-centered
cubic Zr-H.

At that point, we can notice that detailed derivation of
the Zr-H TBIM (recalled in section 2.2), and a preliminary
Monte-Carlo study, have been already performed in Ref. [19].
However, the present investigation is clearly distinct from
this previous work. In ref. [19], we failed at directly imple-
menting the concentration-dependent TBIM in our MC with
the global concentration approach, because of unphysical
demixing phenomena. To overcome the problem, we imple-
mented our global concentration approachMCwith an alter-
native Ising model, fitted on DFT calculations by Connolly-
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Type Stoichiometry Bravais type for H occupancy of tetrahedral interstitial sites
[21] Zr cage-lattice [23]


 ZrH1.0 FCT H atoms located on (110) planes [23, 24]
� ZrH1.4−1.66 FCC H atoms with no particular order [24, 25, 26],

potentially forming ordered patterns at low temperature [27, 28]
" ZrH1.66−2.0 FCT H atoms nearly saturating tetrahedral sites [23]

Table 1
Structural characteristics of the three main zirconium hydrides.

Xc pH1 pH2 pH3 pH4 pH5 pH6 pH7 pH8A0.5 1 1 0 0 0 0 0 0
B0.5 1 0 0 1 0 0 0 0
C0.5 1 0 0 0 0 0 0 1
A1.0 1 1 1 1 0 0 0 0
B1.0 1 1 1 0 1 0 0 0
C1.0 1 1 1 0 0 1 0 0
D1.0 1 0 0 1 1 0 0 1
E1.0 1 1 1 0 0 0 0 1
F1.0 1 0 0 1 0 1 1 0
A1.5 0 0 1 1 1 1 1 1
B1.5 0 1 1 0 1 1 1 1
C1.5 0 1 1 1 1 1 1 0

Table 2
Definition of a set of Xc ordered structures with respective ZrHc□2−c stoichiometries, using
occupation factors of tetrahedral interstitial sites (pHi equals 1 if site i is occupied by an H
atom, 0 otherwise). Elementary cell drawn with Ovito [30].

Williams inversion scheme [20]. In the present work, we
manage to employ our strongly concentration-dependent TBIM
in MC simulations, thanks to a local concentration method-
ology. This local concentration MC based on TBIM allows
us to build a Zr-H schematic phase diagram (section 4), sim-
ilar to the one obtained on Figure 9 of ref. [19] by global
concentration MC based on DFT-fitted Ising model.

2. Position of the problem for Zr-H system
2.1. System under study

We will here focus on the case of Zr-H system, an inter-
metallic of particular interest in nuclear safety [21, 22].

This binary system can form several kinds of sub-stoichiometric
compounds, with a face-centered cubic (FCC) or tetragonal-
centered cubic (FCT) zirconium lattice, and hydrogen atoms
located on tetrahedral interstitial sites. Characteristics of
these intermetallic hydrides are detailed in Table 1.

In our simulations, wewill consider crystallographic vari-
ants with FCC Zr lattice at cell parameter fixed at 4.82Å
(equilibrium parameter of fluorite-like ZrH2 structure deter-mined by first-principle calculation [29]), and various hy-
drogen concentrations and occupations. These variants of
stoichiometry ZrHc□2−c , where c represents the H/Zr ra-
tio and□ an empty tetrahedral interstitial site, are described
on Table 2. In our approach, this ZrHc□2−c system will be
treated as a three-components alloys: zirconium Zr on FCC
cage-lattice, hydrogen H on tetrahedral site, and vacancy□
on tetrahedral site.

2.2. Energetic model: Tight-Binding Ising Model
(TBIM)

Here is a recap of procedure and results developed in Ref.
[31, 19], which will be necessary for what follows.
2.2.1. Starting point: the Tight-Binding (TB)

Hamiltonian
The starting-point Hamiltonian model is the following

Tight-Binding (TB) Hamiltonian, expressed on orthogonal
atomic orbital basis {|i, �u⟩} (i, � = s, p, d and u = Zr,H,□
respectively index site, atomic orbital and atomic type) :

H =
∑

i

∑

u

∑

�u

pui |i, �u⟩�
�u
i ⟨i, �u|

+
∑

i,j
i≠j

∑

u,v

∑

�u,�v

pui p
v
j |i, �u⟩�

�u�v
ij ⟨j, �v| (1)

where ��ui denotes energy level of orbital � of u atomic
type located on site i, and ��u�vij hopping integrals from or-
bital � of u atomic type located on site i to orbital � of v
atomic type located on site j (here, ��u�vij are assumed to be
vanishing if i and j are not first-neighbors). The pui factorrepresents the atomic occupation : it equals 1 if site i is oc-
cupied by atomic type u, and zero otherwise.

This TB Hamiltonian relies on an spd parameterization
splitting total energy into a sum of a band term (obtained by
integration of density of states), and a repulsive Born-Mayer
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term [29, 31] (assumed to be fixed at given hydrogen con-
centration and lattice geometry): Etot = Eband + Erep. Onlythe band term will be considered in what follows. Numeri-
cal values of energy levels and hopping integrals are given
in Appendix A (see [29, 31] for detailed fitting procedure).

Furthermore, computing partial electronic filling on s,
p, d orbitals, we find a good reproduction of charge transfer
(see [31], Table 4.3), coherent with H - Zr electronegativity
difference: partial filling at Fermi level near 1.2 (resp., lower
than 4.0) for H (resp., for Zr).
2.2.2. Derivation procedure: the Generalized

Perturbation Method
The energetic model we will use here to implement our

Monte-Carlo approach is the Tight-Binding IsingModel (TBIM).
Within this model, the band energy of an ordered variant Xcof Table 2 is expressed in the following way:

Eband(Xc) = Eband(Ωc) + Eord(Xc) (2)
The first term of right member of equation (2), Eband(Ωc),represents the band energy ofH/□ interstitial disordered state
Ωc . The second term, called ordering energy, is the little
part of the energy characterizing the specific ordered state
Xc , and is defined by:

Eord(Xc) = 1
2
∑

i,j

(

pHi − ⟨pHi ⟩
)(

pHj − ⟨pHj ⟩
)

Vj(c) (3)

Within eq. (3), differences pHi − ⟨pHi ⟩ corresponds to the
concentration fluctuation on site i with respect to the disor-
dered state, and Vj(c) denotes pairwise interaction between
two hydrogen jtℎ neighbors.

These effective pairwise interactions between hydrogen
atoms Vj(c) appearing in equation (3) are derived from TB
Hamiltonian (1) using the Generalized Perturbation Method
[32, 33] (GPM) based on Coherent Potential Approximation
[34, 35] (CPA).

This technique falls into two parts.
First, one needs to represent the H/□ interstitial disorder

on the tetrahedral sublattice for a given composition c, by
resolving the following self-consistent equation (this is what
we call “CPA”):

c ⋅
�sH − Σ(E)

1 − (�sH − Σ(E))Ḡ(E)
− (2 − c) ⋅ 1

Ḡ(E)
= 0 (4)

where Ḡ(E) denotes the Green’s function of the disordered
effective medium, and Σ a complex potential representing
the effective energy level of tetrahedral interstitial site.

The second step (called “GPM”) consists in taking the
previously computed disordered state as a reference, and com-
puting H-H pairwise interactions by perturbative calculation
through the following analytic formula [33] (for twoH atoms
located on sites i1 and i2):

Vj(c) = − 2
�
Im∫

EF

−∞

[

1
(

1 − (�sH − Σ(E)
)

Ḡ(E))Ḡ(E)

]2

⋅
1

Nk⃗Nk⃗′
⋅
∑

k⃗,k⃗′
Tr
(

GHH
i1i2
(E, k⃗)GHH

i2i1
(E, k⃗′)

⋅ei(k⃗−k⃗
′)⋅r⃗i1i2

)

⋅ dE (5)

wherein r⃗i1i2 denotes the distance vector between i1 and
i2 sites, GHH

i1i2
(E, k⃗) the projection of Green’s function Ḡ(E)

on sites i1, i2 at point k⃗ of first Brillouin zone,Nk⃗ the number
of k⃗ points, and EF the energy at Fermi level. Formula (5)
can be generalized for triplets, quadruplets, etc, correspond-
ing to higher order additional terms in perturbative develop-
ment (3). In practice, we have proven [31, 19] that for the
Zr-H system, these multiplet interactions are negligible with
respect to pairwise interactions.
2.2.3. Result: a concentration-dependent

hydrogen-hydrogen pairwise interaction model
In Ref. [19, 31], we have applied the methodology de-

scribed in section 2.2.2 to compute the H-H pairwise interac-
tions on a large range of concentration from c = 0.0 to c =
2.0 (see Table 4 in Appendix). The procedure led to three
major conclusions: (i) H-H pairwise interactions are neg-
ligible beyond fourth neighbors, (ii) orders of magnitudes
(|V3| >> |V1|, |V2|, |V4|) point out that ordering energies
are mostly driven by third-neighbors H-H pairwise interac-
tions, (iii) signs of pairwise interactions (V1 > 0, V2 < 0,
V3 < 0, V4 < 0) indicate that an hydrogen atom tends to be
preferentially surrounded by vacancy at first neighborhood
and hydrogen at second, third and fourth neighborhood. On
top of that, we have noticed that pairwise interactions were
presenting a substantial dependency in hydrogen concentra-
tion.

In order to explicit this concentration dependency of pair-
wise interactions, we have performed here a second-order
polynomial fitting on data from Table 4, leading to the fol-
lowing analytic expressions in meV (V3 corresponds to an
average on the two kinds of third neighborhoods):

V1 = 7.2 ⋅ c − 0.2
V2 = 4.4 ⋅ c2 − 15.4 ⋅ c − 6.1
V3 = 4.4 ⋅ c2 + 5.7 ⋅ c − 70.4 (6)
V4 = 3.9 ⋅ c2 + 1.5 ⋅ c − 16.8

Importance of correctly implementing this concentration de-
pendency in calculations of ordering energy and canonical
Monte-Carlo algorithms will be developed next.
2.3. Reproduction of ordering processes using

TBIM: order, disorder, segregation
2.3.1. Methodology: benchmark TBIM/DFT

In order to validate the ability of the TBIM constructed
in section 2 to reproduce H/□ interstitial ordering processes
on tetrahedral interstitial sub-lattice, we have performed a
benchmark with Density Functional Theory [36, 37] (DFT)
results. This ones have been performed at fixed geometry
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Figure 1: Sequences of formation energies with respect to the most stable ordered state (resp. Zr, C0.5, D1.0, C1.5, ZrH2 at
concentrations c = 0.0, 0.5, 1.0, 1.5, 2.0): comparison between TBIM and DFT results. Green points correspond to ordered
variants of Table 2, and blue points to the disordered state Ωc (resp. computed using CPA/SQS technique in TBIM/DFT
approach). Red triangles identify the demixed state computed using eq. (7) from Zr and ZrH2 energies, and red squares (resp.
circles) correspond to the results obtained using global (resp. local) concentration formulation of ordering energy described in
section 2.3.3.

(CFC Zr cell with lattice parameter a = 4.82Å, fixed vol-
ume of cell, form of cell, and internal coordinates), using
the Vienna Ab initio Simulation Package [38, 39], with 350
eV energy cut-off, ultrasoft pseudo-potentials [40, 41], and
13 × 13 × 13 Γ-centered k-points grid. In order to repre-
sent the disordered state in DFT, we have used one 32-Zr
atoms Special Quasirandom Structure [42] (SQS) per con-
centration, built with themcsqsmodulus [43] of ATAT code
[44], taking into account clusters containing atomic pairs up
to fourth neighboring length H-H pairs.

Energy sequences of ordered variants of Table 2, pre-
viously computed by both TBIM and DFT approach in ref.
[19], are presented on Figure 1. On these graphics we have
also added the novel results of disordered phase Ωc (resp.computed usingCPA/SQS technique in TBIM/DFT approach)
and demixed state �c in order to evaluate the ordering ten-
dency.
2.3.2. Ability of TBIM to reproduce ordering

sequences, stability of order vs disorder
Considering Figure 1, we can draw two preliminary ma-

jor conclusions. First, the procedure validates the ability of
the TBIM to reproduce H/□ interstitial ordering processes,
since it correctly reproduces the energy sequences of ordered
variants obtained byDFT calculations (green points on graph-
ics). Secondly, the ZrHc□2−c system tends to organize into
interstitial ordered variants, rather than interstitial disorder,
since for each concentration the energy of the disordered
phase (blue cross on graphics) is higher than the energy of
the most stable ordered variant: resp. C0.5, D1.0 (isomor-
phic to the experimentally-observed 
 phase [23, 24]), C1.5for c = 0.5, 1.0, 1.5.

For ZrHc□2−c , we are expecting three possible behav-

iors for H/□ interstitial occupation of tetrahedral sub-lattice:
(i) disorder (random occupation of H), (ii) order (stability of
one or several ordered variants), (iii) phase separation (seg-
regation of H on the one hand, and □ on the other hand).
We have shown the preferential stability of interstitial order-
ing with respect to interstitial disorder: it thus remains the
question of the phase separation tendency.
2.3.3. Stability of order vs segregation: importance of

local concentration
The energy of the demixed state�c at concentration c canbe obtained by computing the respective energy E(Zr) and

E(ZrH2) of two independent structures Zr and ZrH2, thenapplying the following formula:
E(�c) =

c
2
⋅ E(ZrH2) + (1 − c

2
) ⋅ E(Zr) (7)

In DFT, terms E(Zr) and E(ZrH2) are computed on Zr and
ZrH2 cells. In TBIM, one applies formula (7) in cases c =
0.0 and c = 2.0, wherein the ordering energy (defined by eq.
(3) is vanishing, to compute E(Zr) and E(ZrH2). Both ap-
proaches (red triangles on graphics of Fig. 1) reveal that the
energy of the demixed state is higher than the one of the most
stable ordered variant (resp. C0.5, D1.0, C1.5 at concentra-
tions c = 0.5, 1.0, 1.5). Thus, the ZrHc□2−c system tends to
organize into interstitial ordered variants, rather than demix.

This energetic comparison between segregation and or-
dering has been based on calculations on separated Zr and
ZrH2 structures. In practice, applying a TBIM-basedMonte-
Carlo on a supercell, demixing phenomena will occur in the
following way: a part of interstitial sites of the simulation
box saturated in H, and the other part unoccupied. To com-
pute an average ordering energy on the simulation box, two
formulations are possible.
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The first one, called “global concentration approach”,
neglects the local concentration dependency of pairwise po-
tential. In other words, in the hydrogen-rich region (ZrH2-like environment) of the demixed state �c , pairwise potentialtake the value Vi(c). With this formulation, in eq. (3) con-
centration c corresponds to the ratio of number of H atoms
in simulation box, on all interstitial sites of simulation box.

The second one, called “local concentration approach”,
takes into account local concentration dependency of pair-
wise potential. In other words, in the hydrogen-rich region
(ZrH2-like environment) of the demixed state �c , pairwisepotential take the value Vi(c = 2.0) (corresponding to a lo-
cal environment with local concentration c = 2.0). With this
formulation, in eq. (3) concentration c is fixed to the value
c = 2.0 (local ZrH2 environment).

Both approaches are numerically applied by computing
ordering energy of demixed phase using eq. (3) (with c or
c = 2.0 for global or local concentration approach), then
subtracting the energy of themost stable ordered variant (resp.
C0.5, D1.0, C1.5 for c = 0.5, 1.0, 1.5). One can see that globalconcentration formulation of ordering energy (red squares
on Fig. 1, left) leads to a unphysical segregation tendency,
whereas local concentration formulation of ordering energy
(red circles on Fig. 1, left) is coherent with previous results
(segregation disfavored with respect to ordering).

This observation enhances the importance of taking into
account local concentration in TBIM-based studies of the
ZrHc□2−c system, to reproduce the ordering tendencies, which
correspond to the experimental stabilities of ordered phases
from Table 1. We will see in the following that this last re-
mark, due to the substantial dependency of pairwise poten-
tials in concentration (noticed in section 2.2.3), will take a
particular importance in our Monte-Carlo study.

3. Local concentration model for Monte-Carlo
3.1. Preliminaries

Wewill use here a canonical Monte-CarloMetropolis al-
gorithm (fixed number of atoms in the simulation box). Each
simulation box contains 8000 interstitial tetrahedral sites,
and takes into account periodic boundary conditions. The
box geometry is fixed (rigid lattice), with lattice parame-
ter of simple cubic (SC) interstitial lattice fixed to a∕2 with
a = 4.82Å. For each fixed temperature, we have performed
8 ⋅ 106 hydrogen-vacancy exchanges in simulation box.
3.2. Insufficiency of global concentration

approach in Monte-Carlo, leading to phase
separation at 0K

The global concentration c in hydrogen on the simula-
tion box, is defined as the ratio of the number of sites of the
simulation box occupied by H atoms, on the total number of
sitesNbox = 8000 of the simulation box. It can be expressed
using the following formula:

c = 1
Nbox

⋅
Nbox
∑

i=1
pHi (8)

Before iterations: After 8 ⋅ 106 iterations:
interstitial disorder H/□ demixtion

Figure 2: Global concentration approach at c = 1.0 and 0K:
atomistic view of the simulation box (interstitial sublattice
only: green for H atom, red for vacancy) before and after
convergence.

Figure 3: Schematic representation of ensemblist description
used on the SC tetrahedral interstitial sublattice.

wherein pHi denotes the occupation number of interstitial site
i (equals to 1 if site i is occupied by an H atom, and 0 other-
wise).

In our Monte-Carlo simulations, the global concentra-
tion approach consists in assigning the value Vi(c) (with cdefined by eq. (8)) to a pairwise interaction Vi between two
i-th neighbors of the simulation box occupied by H atoms.
With this formulation, the value of pairwise interaction Vidoes not depend on local hydrogen environment on the pair:
for instance, a couple of two hydrogen atoms i-th neighbors
will have the same value of pairwise interaction, whether it
is surrounded by hydrogen (local environment ZrH2) or va-cancies (local environment Zr).

Implementation of this global concentrationMonte-Carlo
approach at low temperature leads to a general tendency of
the system to hydrogen segregation (see Figure 2 for illustra-
tion), whatever the imposed concentration, and even though
the dimensions of simulation box are increased (double di-
mension in each direction x,y,z). This is in contradiction
with experimental observations (
 and � stabilized phases of
Table 1) and DFT results from section 2.3. Such a problem
is caused by the necessity of correctly taking into account
concentration dependency of pairwise potentials in order to
avoid a general segregation tendency, which was previously
evoked in section 2.3.3. For that reason, we will implement
the local concentration dependency in Monte-Carlo, and de-
tail the methodology.
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c = 0.25: coexistence Zr∕C0.5 c = 0.50: C0.5 stabilization c = 0.75: coexistence C0.5∕D1.0 c = 1.00: D1.0 stabilization

c = 1.25: coexistence D1.0∕C1.5 c = 1.50: C1.5 stabilization c = 1.75: coexistence C1.5∕ZrH2

Figure 4: Simulation results at 0K with the local concentration approach: atomistic view of the simulation box (interstitial
sublattice only: green for H atom, red for vacancy).

3.3. Definition of the local concentration model
In section 2.2.3, we have fitted the analytic dependency

of pairwise potentials in concentration (eq. (6)).
We will now define several particular sets of interstitial

sites, represented on Figure 3.
The first ones are Ek(i): the site i for k = 0, and the

sets of sites j which are k-th neighbors of i on SC interstitial
sublattice for k > 0. Respectively, the cardinal of sets E0(i),
E1(i), E2(i), E3(i), E4(i) equals to 1, 6, 12, 8, 6.The second one is Ẽ(i), corresponding to the union of
site i and its sites first, second, third and fourth neighbors
(Card(Ẽ(i)) = 33):

Ẽ(i) =
4
⋃

k=0
Ek(i)

Considering the cluster Ẽ(i), one can define the local
concentration as the ratio between the number of sites occu-
pied by H atoms within this cluster, on the number of total
sites of this cluster:

cloc(i) =

∑

j∈Ẽ(i)
pHj

Card(Ẽ(i)) =

4
∑

k=0

∑

j∈Ek(i)
pHj

4
∑

k=0
Card(Ek(i))

(9)

One can link local concentration (defined by eq. (9)) to global
concentration (defined by eq. (8)) through the following for-
mula, whose proof in given in Appendix C:

c = 1
Nbox

⋅
Nbox
∑

i=1
cloc(i) (10)

Within this formalism, one can define a local ordering
energy for each site i, depending on local concentration on
this site:

Eloc(i) =
1
2
⋅ pHi ⋅

4
∑

k=1

∑

j∈Ek(i)
pHj ⋅ Vj(cloc(i)) (11)

The global ordering energy of the simulation box can then
be expressed as the arithmetical average on all local ordering
energies of the simulation box:

Eord =
1

Nbox
⋅
Nbox
∑

i=1
Eloc(i) (12)

3.4. Comments on the local concentration model
Equations (9), (10), (11) and (12), are defining our local

concentration model.
This last one is preserving process reversibility during an

occupation exchange between two sites i and j of the simula-
tion box with different initial atomic occupations (pHi ≠ pHj ).In other words, if one performs the inverse exchange process
(go back to initial occupation numbers), local concentrations
take their values prior exchange: consequently, it will be the
same for local ordering energies, and therefore for global or-
dering energy.

Moreover, in order to reduce CPU time, global order-
ing energy will be computed using formula (12) only once,
before starting Metropolis algorithm. Then, at each proposi-
tion of exchange occupation between two sites i and j (with
different initial occupations), we will add the energy varia-
tion ΔE with respect to initial state. This quantity ΔE will
involve the sums of local ordering energies affected by the
exchange, that is to say, the sum of ordering energies of sites
located in neighboring environment of sites i and j:

ΔE =
∑

k∈Ẽ(i)∪Ẽ(j)

Eloc(k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
after exchange

−
∑

k∈Ẽ(i)∪Ẽ(j)

Eloc(k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
before exchange

(13)

3.5. Reproduction of ordering tendencies at 0K
using local concentration model

Contrary to the global concentration approach used in
section 3.2, which has led to a general segregation tendency,
our local concentration approach defined in section 3.3 al-
lows us to reproduce the ordering tendency at 0K. Starting
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Figure 5: Order-disorder phase transition for D1.0 and C1.5 variants, identified by plotting long-range and short-range order
parameters with respect to temperature. In short-range approach, one uses the average number of j-th H neighbors of an H
atom in the simulation box, in comparison with the known values for ordered variants tD1.0jmoy, t

C1.5
jmoy (continuous lines) and disordered

phase tΩcjmoy = c∕2 ⋅ t
ZrH2
jmoy (dotted lines). In long-range approach, one uses parameters defined in Appendix D (only the heating part

of temperature loop is presented in this case).

from disordered state at several concentrations, we have then
stabilized several characteristic ordered variants: the char-
acteristic most-stable ordered variants C0.5, D1.0, C1.5 at re-spective concentrations c = 0.5, 1.0, 1.5, and coexistence of
ordered variants Zr∕C0.5, C0.5∕D1.0, D1.0∕C1.5, C1.5∕ZrH2,at intermediate concentrations c = 0.25, 0.75, 1.25, 1.75. Atom-
istic views of the converged simulations are presented on
Figure 4.

Moreover, at the early stages of the iterations at 0K, some
twinned domains can be observed: for instance, at c = 1.0,
germinating D1.0 structures with different grain orientations.However, they reorganize in a single monovariant after a suf-
ficient number of iterations (8 ⋅106 in our approach), leading
to the quasi-perfect ordered structures presented on Fig. 4.

The stable variants D1.0, ZrH2, C1.5, C0.5 can be respec-tively identified as 
 phase (hydrogen occupation along (110)
planes [23, 24], see Table 1), " phase (H saturating tetrahe-
dral sites [23], see Table 1), � phase (low-temperature or-
dered variant with ZrH1.5 stoichiometry [27, 28], see Table
1), � phase (applying an HCP from FCC structural change
on this phase with Zr2H stoichiometry [45]).

4. Application to the thermostatistical
exploration of Zr-H phase diagram
We can use the local concentration model defined in sec-

tion 3.3 in order to build a phase diagram ofH/vacancy chem-
ical order on interstitial tetrahedral sublattice, by canonical

Monte-Carlo.
Selecting several concentrations between 0.0 and 2.0 (resp.

c = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75), we have performed
a temperature loop for each concentration, starting from a
randomly-distributed H/vacancy repartition at 0K. Forma-
tion of ordered phases are identified by following the evo-
lution of both long-range order parameters, defined in Ap-
pendix D, and Warren-Cowley short-range order parame-
ters, defined as the average number of first, second, third
and fourth hydrogen neighbors of an hydrogen atom in the
simulation box tjmoy (j ∈ {1, 2, 3, 4}). For instance, one
can observe on Figure 5 the order-disorder phase transition
(of second-order type) for D1.0 and C1.5 ordered variants,
confirming stability of 
 phase (experimentally evidenced
by [46, 23, 24], see Table 1) and low-temperature interstitial
ordering of � phase (experimentally evidenced by [27, 28],
see Table 1).

The path lead us to identify several cœxistence domains
of ordered variants at low temperature: Zr+C0.5, C0.5+D1.0,D1.0 +C1.5, C1.5 +ZrH2 for respective concentration ranges
c ∈ [0.00; 0.50], [0.50; 1.00], [1.00; 1.50], [1.50; 2.00]. With
the correspondences established in section 3.5, these domains
respectively correspond to phase coexistence Zr + � , � + 
 ,

 + �, � + ".

Such considerations are summarized on the schematic
phase diagram of Figure 6. This last one is coherent with the
diagram presented on Figure 9 of Ref. [19]: stabilization of
� + 
 , 
 + �, � + " domains, and order-disorder temperature
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Figure 6: Phase diagram of H-vacancy interstitial ordering on the tetrahedral interstitial sublattice, resulting from our local
concentration Monte-Carlo. Experimental data from [47].

respectively around 900K, 950K, and 600K for � , 
 and �
phase.

At that time, writing [19] we were not able to use our
TBIM to build the phase diagram by “classical” global con-
centration Monte-Carlo, since this approach was leading to
a generalized hydrogen segregation tendency. To overcome
this difficulty, we used an Ising model fitted on DFT calcu-
lations by Connolly-Williams inversion scheme [20].

With the new local concentrationmethodology presented
in the present article, we have managed to correctly take
into account the strong-concentration dependency of TBIM
in Monte-Carlo, and stabilize, at low temperature, the same
kinds of experimentally-detected ordered variants than the
CEM-based global concentration Monte-Carlo of Ref. [19].

5. Conclusion and perspectives
We have first presented the system chosen as a support

for our study, zirconium hydrides (section 2.1), and the en-
ergetic model chosen to implement the canonical Monte-
Carlo, the Tight-Binding IsingModel (section 2.2). We have
shown the importance, with those specific system and en-
ergetic model, to take into account the local concentration
dependency for H-H pairwise interactions, in order to avoid
a non-physical general segregation tendency (sections 2.3.3
and 3.2). We have then detailed the implementation of local
concentration dependency in Monte-Carlo (sections 3.3 and
3.4). This local concentration Monte-Carlo has been then
employed to build a schematic diagram of hydrogen-vacancy
ordering on interstitial tetrahedral sublattice of Zr-H (section
4).

To sum up, the main interest of this work is to give a
ready-to-useMonte-Carlomethodology for treating local con-
centration, which can be applied for any alloy or intermetal-
lic whose ordering energy is described by an Ising model
with strongly concentration-dependent pairwise interactions

(which is often the case for substitutional binary alloys [13],
for instance). The path can be also enlarged for more com-
plex interatomic potentials. Particularly, several CEM [48,
49, 50], derived by Connolly-Williams inversion scheme by
fits on DFT results, were developed to study interstitial or-
dering of zirconium hydrides by global concentrationMC. It
would be interesting to introduce the local concentration in
these MC investigations, and evaluate its impact on phases
stability.

Beyond the case of MC bulk studies of binary materials
with strong concentration dependency of interatomic poten-
tials (aforesaid intermetallic hydrides [48, 49, 50] and sub-
stitutional alloys [9, 10]), the methodology developed here
can be broadened to more complex MC investigations. For
instance, it can be employed to study the segregation phe-
nomena around dislocations, implying important variations
of local concentration: C around steels dislocations [51], P
and Cr in �-iron dislocation core [52], etc. It can also be use-
ful for investigations on high-entropy alloys, wherein local
concentration fluctuations could be quite significant [53].
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Energy levels S-K parameters

�u ��ui coupling �0ZrZr �0ZrH
sH 7.35 dd� −1.036
sZr 13.0 dd� −0.53dd�
pZr 18.0 dd� 0.10dd�
dZr 10.6 pd� 1.179

pd� −0.30pd�
pp� 2.195
pp� −0.10pp�
sd� 0.74pd� -1.997
ss� −0.46pp� -1.517
sp� 0.66pp� 1.436

Table 3
Energy levels (in eV) and Slater-Koster parameters �(r) =
�0ijexp[−qij(r− rij)∕rij)] (in eV) for hopping integrals. rij is the
interatomic distance between first neighbors (rZrZr = 3.20Å,
and rZrH = 2.09Å), qZrZr = 2.40, and qZrH = 1.8.

c V1 (meV) V2 (meV) V3 (meV) V4 (meV)
0.250 1.97 -9.18 -67.32 -16.41
0.500 3.46 -12.96 -67.12 -14.49
0.750 4.81 -15.67 -65.42 -13.64
1.000 6.71 -17.29 -60.97 -11.48
1.250 8.77 -18.16 -55.56 -8.68
1.500 10.77 -18.65 -50.37 -5.61
1.750 12.58 -19.12 -45.98 -2.16
2.000 14.23 -19.62 -42.74 2.03

Table 4
Pairwise interactions values between first, second, third and
fourth order neighboring hydrogen atoms, with hydrogen con-
centration c, extracted from [31].

A. Numerical implementation of TB
Hamiltonian
Table 3 gives the numerical parameters for TB Hamilto-

nian defined by eq. (1).
Detailed fitting procedure is given in Ref. [29, 31].

B. Data for TBIM fitting
The data employed for the fitting of formula (6) is given

in Table 4.

C. Relation between global and local
concentration: mathematical proof
Here, for all subset of sites A of the simulation box, the

notation ℭbox(A) designs the complement of A in the simu-
lation box.

Using definition (9) of local concentration, one canwrite:
1

Nbox
⋅
Nbox
∑

i=1
cloc(i) =

1
Nbox

⋅
1
33
⋅
Nbox
∑

i=1

∑

j∈Ẽ(i)

pHj
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=S

(14)

Figure 7: Representation of specific sublattices used to define
long-range order parameters.

Let i a site of the simulation box, this site has 32 neigh-
bors, which are elements of the set Ẽ(i) ∩ ℭbox({i}).Reciprocally, there are 32 sites l, different from i, which
contain i in their set Ẽ(l).

Therefore, among the 33 ⋅Nbox terms of double sum S,
there are 33 terms taking the value pHi .Since this argument is valid for each sites i of the simula-
tion box (i ∈ {1,⋯ , Nbox}), one can rearrange these terms
to write:

S =
Nbox
∑

i=1
33 ⋅ pHi (15)

Injecting (15) in equality (14) one gets:
1

Nbox
⋅
Nbox
∑

i=1
cloc(i) =

1
Nbox

⋅
Nbox
∑

i=1
pHi (16)

By identification with definition (8) of global concentration
c, one then gets the following equation:

1
Nbox

⋅
Nbox
∑

i=1
cloc(i) = c (17)

corresponding to formula (10).

D. Definition of long-range order parameters
Order parameter for D1.0 (resp. C1.5) variant can be de-

fined by dividing interstitial tetrahedral sublattice within two
(resp. four) sublattices, as represented on Figure 7, then
defining linear combinations of concentrations on these sub-
lattices:

�(D1.0) = c� − c�

�(C1.5) = 1
3
(c2 + c3 + c4) − c1

As concerns C0.5 variant, one uses the definition of �(C1.5)with permutations H ⟷ □.
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