W. S. Mcmahon, S. D. Begolka, and . Miller, Innate and adaptive immune responses of the central nervous system, Critical reviews in immunology, vol.26, pp.149-188, 2006.

. Hunter, Trafficking of immune cells in the central nervous system, J Clin Invest, vol.120, pp.1368-1379, 2010.

G. Kaur, S. J. Han, I. Yang, and C. Crane, Microglia and Central Nervous System Immunity, Neurosurgery Clinics of North America, vol.21, issue.1, pp.43-51, 2010.
DOI : 10.1016/j.nec.2009.08.009

. Ling, Origin of microglia, Microscopy research and technique, vol.54, pp.2-9, 2001.

J. Studdard, M. Carothers, P. A. Masuya, C. J. Fleming, M. Drake et al., Hematopoietic origin of microglial and perivascular cells in brain, Experimental neurology, vol.186, pp.134-144, 2004.

W. J. Streit, Microglia and Macrophages in the Developing CNS, NeuroToxicology, vol.22, issue.5, pp.619-624, 2001.
DOI : 10.1016/S0161-813X(01)00033-X

G. , K. Leuthauser-jaschinski, E. Orso-kettenmann, H. , U. K. Hanisch et al., Are circulating monocytes as microglia orthologues appropriate biomarker targets for neuronal diseases? Central nervous system agents in medicinal chemistry 9:307-330. 11 Physiology of microglia Microglia in the CNS: immigrants from another world, 13. Havenith, C. E., D. Askew, and W. S, pp.344-354461, 2009.

. Walker, Mouse resident microglia: isolation and characterization of immunoregulatory properties with naive CD4+ and CD8+ T-cells, Glia, vol.22, issue.14, pp.348-359, 1998.

D. Montoni and . Couez, Identification of new CNS-resident macrophage subpopulation molecular markers for the discrimination with murine systemic macrophages, Journal of neuroimmunology, vol.169, issue.15, pp.39-49, 2005.

D. Jeannin and G. W. Couez-kreutzberg, Neonatal and adult microglia cross-present exogenous antigens Microglia: a sensor for pathological events in the CNS, Glia Trends in neurosciences, vol.56, issue.17, pp.69-77312, 1996.

. Helmchen, Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo, Science, vol.308, issue.18, pp.1314-1318, 2005.

Y. Kim, S. Zuo, D. R. Jung, M. L. Littman, W. B. Dustin et al., ATP mediates rapid microglial response to local brain injury in vivo, Nature neuroscience, vol.8, pp.752-758, 2005.

J. Kohsaka, R. Nabekura-jr, and . Medzhitov, Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury, J Neurosci Lehnardt, S. Glia, vol.29, issue.58, pp.3974-3980253, 2009.

D. Miller, Innate and adaptive immune requirements for induction of autoimmune demyelinating disease by molecular mimicry, Molecular immunology, vol.40, pp.1103-1108, 2004.

S. Akira, A. Ghosh, S. Chaudhuri, L. P. Shriver, and K. , Mammalian Toll-like receptors, Current Opinion in Immunology, vol.15, issue.1, pp.5-113, 2003.
DOI : 10.1016/S0952-7915(02)00013-4

B. N. Maresz, Microglial cell activation and proliferation precedes the onset of 89, 2005.

A. Ford, A. L. , A. L. Goodsall, W. F. Hickey, and J. D. Sedgwick, Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic proteinreactive CD4+ T cells compared, J Immunol J Immunol, vol.160, issue.154, pp.4671-46804309, 1995.

B. Badie and J. Schartner, Role of microglia in glioma biology, Microscopy Research and Technique, vol.169, issue.2, pp.106-113, 2001.
DOI : 10.1002/jemt.1125

A. Meier and J. P. Prat, Th1 polarization of CD4+ T cells by Toll-like receptor 3-activated human microglia, Journal of neuropathology and experimental neurology, vol.66, pp.848-859, 2007.

M. J. France, J. D. Wick, H. J. Pfeifer, J. W. Geuze-yewdell, J. R. Bennink-shen et al., Processing of bacterial antigens for presentation to class I and II MHC-restricted T lymphocytes Capture and processing of exogenous antigens for presentation on MHC molecules Annual review of immunology 15:821- 850. 33 Mechanisms of viral interference with MHC class I antigen processing and presentation Pathways for antigen cross presentation Priming of T cells by exogenous antigen cross-presented on MHC class I molecules, Infectious agents and disease Annual review of cell and developmental biology Springer seminars in immunopathology Current opinion in immunology, vol.4, issue.18, pp.1-12579, 1995.

W. R. Miller and . Heath, Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells, The Journal of experimental medicine, vol.186, issue.37, pp.239-245, 1997.

. Knolle, Cross-priming in health and disease. Nature reviews, Immunology Banchereau, J., and R. M. Steinman, vol.10, issue.38, pp.403-414, 1998.

. Staerz, Macrophages as accessory cells for class I MHC-restricted immune responses, J Immunol, vol.147, issue.40, pp.2846-2851, 1991.

H. , A. Oran, T. Brocker, and J. Jacob, Antigen presentation by monocytes and monocyte-derived cells, Current opinion in immunology, vol.20, pp.52-60

H. Peres, P. Gascan, V. Guermonprez, P. Barnaba, and . Jeannin, Neutrophils efficiently crossprime naive T cells in vivo, Blood, vol.110, pp.2965-2973, 2007.

F. Wilmotte, N. Masson, P. Y. De-tribolet, P. R. Dietrich, and . Walker, Cutting edge: crosspresentation as a mechanism for efficient recruitment of tumor-specific CTL to the brain, J Immunol, vol.171, issue.44, pp.2187-2191, 2003.

. Dietrich, The brain parenchyma is permissive for full antitumor CTL effector function, even in the absence of CD4 T cells, J Immunol, vol.165, pp.3128-3135, 2000.

G. Reichmann, M. Schroeter, S. Jander, and H. G. Fischer, Brain dendritic cells and macrophages/microglia in central nervous system inflammation Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain, 47. Platten, M., and L. Steinman, pp.2717-2726125, 2002.

. Castellano, Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE, Journal of neuroimmunology, vol.223, pp.39-54, 2010.

J. Waldschmidt, A. M. Kirsch, N. Krieg-davoust, C. Vuaillat, G. Androdias et al., CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species From bone marrow to microglia: barriers and avenues, J Immunol Trends in immunology, vol.160, issue.29, pp.4755-4761227, 1998.

P. Zeller, F. L. Schwarz, A. Heppner, and . Aguzzi, Early and rapid engraftment of bone marrowderived microglia in scrapie, J Neurosci, vol.26, pp.11753-11762, 2006.

. Vinters, Microglia -insights into immune system structure, function, and reactivity in the central nervous system, Histol Histopathol, vol.26, pp.519-530, 2011.

M. Hayakawa, T. Migita, Y. Shimada, H. M. Mizuno, L. Johnson et al., Immunotherapy approaches for malignant glioma from Current neurology and neuroscience reports, pp.259-66, 2003.

J. Buckner, P. Brown, O. Neill, B. Meyer, F. Wetmore et al., Central Nervous System Tumors, Mayo Clinic Proceedings, vol.82, issue.10, pp.1271-86, 2007.
DOI : 10.4065/82.10.1271

S. Bailey, P. Carpentier, E. Mcmahon, W. Begolka, and S. Miller, Innate and Adaptive Immune Responses of the Central Nervous System, Critical Reviews??? in Immunology, vol.26, issue.2, pp.149-88, 2006.
DOI : 10.1615/CritRevImmunol.v26.i2.40

E. Vauleon, T. Avril, B. Collet, J. Mosser, V. Quillien et al., Overview of cellular immunotherapy for patients with glioblastoma Dendritic cell therapy of high-grade gliomas, Clin Dev Immunol. Van Gool S Brain Pathol, vol.19, issue.5, pp.694-712, 2009.

J. Jacobs, A. Idema, K. Bol, J. Grotenhuis, I. De-vries et al., Prognostic significance and mechanism of Treg infiltration in human brain tumors, Journal of Neuroimmunology, vol.225, issue.1-2, pp.195-204, 2010.
DOI : 10.1016/j.jneuroim.2010.05.020

S. Sakaguchi, Regulatory T cells ??? a brief history and perspective, European Journal of Immunology, vol.25, issue.S1, pp.3-17, 2011.
DOI : 10.1002/eji.200737593

S. Sivori, M. Falco, D. Chiesa, M. Carlomagno, S. Vitale et al., CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: Induction of cytokine release and cytotoxicity against tumors and dendritic cells, Proceedings of the National Academy of Sciences, vol.101, issue.27, 2004.
DOI : 10.1073/pnas.0403744101

M. E. Smith, Phagocytic properties of microglia in vitro: Implications for a role in multiple sclerosis and EAE, Microscopy Research and Technique, vol.91, issue.2, pp.81-94, 2001.
DOI : 10.1002/jemt.1123

Y. Sonobe, I. Yawata, J. Kawanokuchi, H. Takeuchi, T. Mizuno et al., Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations, Brain Research, vol.1040, issue.1-2, pp.202-207, 2005.
DOI : 10.1016/j.brainres.2005.01.100

K. J. Stacey, D. P. Sester, M. J. Sweet, and D. A. Hume, Macrophage Activation by Immunostimulatory DNA, Curr Top Microbiol Immunol, vol.247, pp.41-58, 2000.
DOI : 10.1007/978-3-642-59672-8_3

&. Rizkalla and W. M. , Acidic and basic fibroblast growth factors are present in glioblastoma multiforme and normal brain, Ann N Y Acad Sci, vol.638, pp.477-480, 1991.

B. J. Steffen, G. Breier, E. C. Butcher, M. Schulz, and B. Engelhardt, ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro, Am J Pathol, vol.148, pp.1819-1838, 1996.

G. Stoll, S. Jander, and M. Schroeter, Inflammation and glial responses in ischemic brain lesions, Progress in Neurobiology, vol.56, issue.2, pp.149-171, 1998.
DOI : 10.1016/S0301-0082(98)00034-3

W. J. Streit, Microglia and Macrophages in the Developing CNS, NeuroToxicology, vol.22, issue.5, pp.619-624, 2001.
DOI : 10.1016/S0161-813X(01)00033-X

K. Strommer, M. F. Hamou, H. Diggelmann, and N. De-tribolet, Cellular and tumoural heterogeneity of EGFR gene amplification in human malignant gliomas, Acta Neurochirurgica, vol.22, issue.3-4, pp.82-87, 1990.
DOI : 10.1007/BF01405784

R. Stupp, W. P. Mason, M. J. Van-den-bent, M. Weller, B. Fisher et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-996, 2005.
DOI : 10.1056/NEJMoa043330

H. S. Suh, M. O. Kim, and S. C. Lee, Inhibition of Granulocyte-Macrophage Colony-Stimulating Factor Signaling and Microglial Proliferation by Anti-CD45RO: Role of Hck Tyrosine Kinase and Phosphatidylinositol 3-Kinase/Akt, The Journal of Immunology, vol.174, issue.5, pp.2712-2719, 2005.
DOI : 10.4049/jimmunol.174.5.2712

J. C. Sun and L. L. Lanier, Natural killer cells remember: An evolutionary bridge between innate and adaptive immunity?, European Journal of Immunology, vol.201, issue.8, pp.2059-2064, 2009.
DOI : 10.1002/eji.200939435

J. C. Sun, S. Lopez-verges, C. C. Kim, J. L. Derisi, and L. L. Lanier, NK Cells and Immune "Memory", The Journal of Immunology, vol.186, issue.4, pp.1891-1897, 2011.
DOI : 10.4049/jimmunol.1003035

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410097

R. Alarcon, C. Fuenzalida, M. Santibanez, V. Bernhardi, and R. , Expression of Scavenger Receptors in Glial Cells: COMPARING THE ADHESION OF ASTROCYTES AND MICROGLIA FROM NEONATAL RATS TO SURFACE-BOUND ??-AMYLOID, Journal of Biological Chemistry, vol.280, issue.34, pp.30406-30415, 2005.
DOI : 10.1074/jbc.M414686200

F. Alliot, M. Marty, D. Cambier, and B. Pessac, A spontaneously immortalized mouse microglial cell line expressing CD4, Developmental Brain Research, vol.95, issue.1, pp.140-143, 1996.
DOI : 10.1016/0165-3806(96)00101-0

F. Aloisi, R. F. Adorini, and L. , Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes, Immunology Today, vol.21, issue.3, pp.141-147, 2000.
DOI : 10.1016/S0167-5699(99)01512-1

E. Ambrosini and F. Aloisi, Chemokines and Glial Cells: A Complex Network in the Central Nervous System, Neurochemical Research, vol.29, issue.5, pp.1017-1038, 2004.
DOI : 10.1023/B:NERE.0000021246.96864.89

B. Badie and J. Schartner, Role of microglia in glioma biology, Microscopy Research and Technique, vol.169, issue.2, pp.106-113, 2001.
DOI : 10.1002/jemt.1125

S. Bailey, P. Carpentier, E. Mcmahon, W. Begolka, and S. Miller, Innate and Adaptive Immune Responses of the Central Nervous System, Critical Reviews??? in Immunology, vol.26, issue.2, pp.149-188, 2006.
DOI : 10.1615/CritRevImmunol.v26.i2.40

J. Bauer, I. Huitinga, W. Zhao, H. Lassmann, W. Hickey et al., The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis, Glia, vol.137, issue.4, pp.437-446, 1995.
DOI : 10.1002/glia.440150407

L. Bonifaz, D. Bonnyay, K. Mahnke, M. Rivera, M. Nussenzweig et al., T Cell Tolerance, The Journal of Experimental Medicine, vol.163, issue.12, pp.1627-1638, 2002.
DOI : 10.1084/jem.192.12.1685

T. Calzascia, D. Berardino-besson, W. Wilmotte, R. Masson, F. De-tribolet et al., Cutting Edge: Cross-Presentation as a Mechanism for Efficient Recruitment of Tumor-Specific CTL to the Brain, The Journal of Immunology, vol.171, issue.5, 2003.
DOI : 10.4049/jimmunol.171.5.2187

M. Carson, J. Doose, B. Melchior, C. Schmid, and C. Ploix, CNS immune privilege: hiding in plain sight, Immunological Reviews, vol.56, issue.1, pp.48-65, 2006.
DOI : 10.1038/nri1843

P. Chefalo, A. Grandea, . Iii, L. Van-kaer, and C. Harding, Tapasin-/- and TAP1-/- Macrophages Are Deficient in Vacuolar Alternate Class I MHC (MHC-I) Processing due to Decreased MHC-I Stability at Phagolysosomal pH, The Journal of Immunology, vol.170, issue.12, pp.5825-5833, 2003.
DOI : 10.4049/jimmunol.170.12.5825

A. Dalpke, M. Schafer, M. Frey, S. Zimmermann, J. Tebbe et al., Immunostimulatory CpG-DNA Activates Murine Microglia, The Journal of Immunology, vol.168, issue.10, pp.4854-4863, 2002.
DOI : 10.4049/jimmunol.168.10.4854

G. Davey, C. Kurts, J. Miller, P. Bouillet, A. Strasser et al., Peripheral Deletion of Autoreactive CD8 T Cells by Cross Presentation of Self-Antigen Occurs by a Bcl-2???inhibitable Pathway Mediated by Bim, The Journal of Experimental Medicine, vol.162, issue.7, pp.947-955, 2002.
DOI : 10.1084/jem.194.6.707

Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, A. J. Nakamura et al., Involvement of LOX-1 in Dendritic Cell-Mediated Antigen Cross-Presentation, Immunity, vol.17, issue.3, pp.353-362, 2002.
DOI : 10.1016/S1074-7613(02)00388-6

B. Dolan, K. Gibbs, . Jr, and S. Ostrand-rosenberg, Dendritic cells crossdressed with peptide MHC class I complexes prime CD81 T cells, 2006.

S. Donnou, S. Fisson, D. Mahe, A. Montoni, and D. Couez, Identification of new CNS-resident macrophage subpopulation molecular markers for the discrimination with murine systemic macrophages, Journal of Neuroimmunology, vol.169, issue.1-2, pp.39-49, 2005.
DOI : 10.1016/j.jneuroim.2005.07.016

V. Durand, S. Wong, D. Tough, L. Bon, and A. , Shaping of adaptive immune responses to soluble proteins by TLR agonists: A role for IFN-alpha/beta, Immunology and Cell Biology, vol.170, issue.6, pp.596-602, 2004.
DOI : 10.1126/science.1087262

I. Ferrer, E. Bernet, E. Soriano, T. Del-rio, and M. Fonseca, Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes, Neuroscience, vol.39, issue.2, pp.451-458, 1990.
DOI : 10.1016/0306-4522(90)90281-8

H. Fischer, B. Nitzgen, T. Germann, K. Degitz, W. Daubener et al., Differentiation driven by granulocyte-macrophage colony-stimu- 76, 1993.

G. Doi, 1002/glia lating factor endows microglia with interferon-g-independent antigen presentation function, J Neuroimmunol, vol.42, pp.87-95

H. Fischer and G. Reichmann, Brain Dendritic Cells and Macrophages/Microglia in Central Nervous System Inflammation, The Journal of Immunology, vol.166, issue.4, pp.2717-2726, 2001.
DOI : 10.4049/jimmunol.166.4.2717

A. Ford, A. Goodsall, W. Hickey, and J. Sedgwick, Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD41 T cells compared, J Immunol, vol.154, pp.4309-4321, 1995.

D. Giulian, Microglia and the Immune Pathology of Alzheimer Disease, The American Journal of Human Genetics, vol.65, issue.1, pp.13-18, 1999.
DOI : 10.1086/302477

D. Giulian and T. Baker, Characterization of ameboid microglia isolated from developing mammalian brain, J Neurosci, vol.6, pp.2163-2178, 1986.

P. Guermonprez and S. Amigorena, Pathways for antigen cross presentation, Springer Seminars in Immunopathology, vol.26, issue.3, pp.257-271, 2005.
DOI : 10.1007/s00281-004-0176-0

U. Hanisch, Microglia as a source and target of cytokines, Glia, vol.29, issue.2, pp.140-155, 2002.
DOI : 10.1002/glia.10161

C. Harding, Intracellular organelles involved in antigen processing and the binding of peptides to class II MHC molecules, Seminars in Immunology, vol.7, issue.6, pp.355-360, 1995.
DOI : 10.1006/smim.1995.0040

C. Havenith, D. Askew, and W. Walker, Mouse resident microglia: Isolation and characterization of immunoregulatory properties with na???ve CD4+ and CD8+ T-cells, Glia, vol.14, issue.4, pp.348-359, 1998.
DOI : 10.1002/(SICI)1098-1136(199804)22:4<348::AID-GLIA4>3.0.CO;2-#

D. Hess, T. Abe, W. Hill, A. Studdard, J. Carothers et al., Hematopoietic origin of microglial and perivascular cells in brain, Experimental Neurology, vol.186, issue.2, pp.134-144, 2004.
DOI : 10.1016/j.expneurol.2003.11.005

D. Hinkerohe, D. Smikalla, A. Haghikia, K. Heupel, C. Haase et al., Effects of cytokines on microglial phenotypes and astroglial coupling in an inflammatory coculture model, Glia, vol.56, issue.2, pp.85-97, 2005.
DOI : 10.1002/glia.20223

J. Husemann, J. Loike, R. Anankov, M. Febbraio, and S. Silverstein, Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system, Glia, vol.7, issue.2, pp.195-205, 2002.
DOI : 10.1002/glia.10148

C. Jack, N. Arbour, J. Manusow, V. Montgrain, M. Blain et al., TLR Signaling Tailors Innate Immune Responses in Human Microglia and Astrocytes, The Journal of Immunology, vol.175, issue.7, pp.4320-4330, 2005.
DOI : 10.4049/jimmunol.175.7.4320

P. Jeannin, G. Magistrelli, N. Herbault, L. Goetsch, S. Godefroy et al., Outer membrane protein???A renders dendritic cells and macrophages responsive to CCL21 and triggers dendritic cell migration to secondary lymphoid organs, European Journal of Immunology, vol.33, issue.2, pp.326-333, 2003.
DOI : 10.1002/immu.200310006

T. Kanzawa, M. Sawada, K. Kato, K. Yamamoto, H. Mori et al., Differentiated regulation of allo-antigen presentation by different types of murine microglial cell lines, Journal of Neuroscience Research, vol.22, issue.3, pp.383-388, 2000.
DOI : 10.1002/1097-4547(20001101)62:3<383::AID-JNR8>3.0.CO;2-6

D. Kennedy and J. Abkowitz, Kinetics of central nervous system microglial and macrophage engraftment: Analysis using a transgenic bone marrow transplantation model, Blood, vol.90, pp.986-993, 1997.

T. Kielian, Toll-like receptors in central nervous system glial inflammation and homeostasis, Journal of Neuroscience Research, vol.170, issue.5, pp.711-730, 2006.
DOI : 10.1002/jnr.20767

M. Kovacsovics-bankowski, K. Clark, B. Benacerraf, and K. Rock, Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages., Proceedings of the National Academy of Sciences, vol.90, issue.11, pp.4942-4946, 1993.
DOI : 10.1073/pnas.90.11.4942

M. Kovacsovics-bankowski and K. Rock, A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules, Science, vol.267, issue.5195, pp.243-246, 1995.
DOI : 10.1126/science.7809629

J. Kuchtey, P. Chefalo, R. Gray, L. Ramachandra, and C. Harding, Enhancement of Dendritic Cell Antigen Cross-Presentation by CpG DNA Involves Type I IFN and Stabilization of Class I MHC mRNA, The Journal of Immunology, vol.175, issue.4, pp.2244-2251, 2005.
DOI : 10.4049/jimmunol.175.4.2244

C. Lapenta, S. Santini, M. Spada, S. Donati, F. Urbani et al., IFN-??-conditioned dendritic cells are highly efficient in inducing cross-priming CD8+ T cells against exogenous viral antigens, European Journal of Immunology, vol.345, issue.8, pp.2046-2060, 2006.
DOI : 10.1002/eji.200535579

H. Lassmann, M. Schmied, K. Vass, and W. Hickey, Bone marrow derived elements and resident microglia in brain inflammation, Glia, vol.16, issue.1, pp.19-24, 1993.
DOI : 10.1002/glia.440070106

A. Limmer, J. Ohl, C. Kurts, H. Ljunggren, Y. Reiss et al., Efficient presentation of exogenous antigen by liver endothelial cells to CD81 T cells results in antigen-specific T-cell tolerance, Nat Med, vol.6, pp.1348-54, 2000.

C. Mariani, J. Kouri, and W. Streit, Rejection of RG-2 gliomas is mediated by microglia and T lymphocytes, Journal of Neuro-Oncology, vol.153, issue.3, pp.243-253, 2006.
DOI : 10.1007/s11060-006-9137-x

J. Marin-teva, I. Dusart, C. C. Gervais, A. Van-rooijen, N. Mallat et al., Microglia Promote the Death of Developing Purkinje Cells, Neuron, vol.41, issue.4, pp.535-547, 2004.
DOI : 10.1016/S0896-6273(04)00069-8

URL : https://hal.archives-ouvertes.fr/hal-00077309

M. Matyszak, S. Denis-donini, S. Citterio, R. Longhi, F. Granucci et al., Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation, European Journal of Immunology, vol.363, issue.10, pp.3063-3076, 1999.
DOI : 10.1002/(SICI)1521-4141(199910)29:10<3063::AID-IMMU3063>3.0.CO;2-G

M. Matyszak and V. Perry, The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system, Neuroscience, vol.74, issue.2, pp.599-608, 1996.
DOI : 10.1016/0306-4522(96)00160-1

P. Mcmenamin, Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations, The Journal of Comparative Neurology, vol.166, issue.4, pp.553-562, 1999.
DOI : 10.1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.0.CO;2-6

A. Minagar, P. Shapshak, R. Fujimura, R. Ownby, M. Heyes et al., The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis, Journal of the Neurological Sciences, vol.202, issue.1-2, pp.13-23, 2002.
DOI : 10.1016/S0022-510X(02)00207-1

K. Nakajima and S. Kohsaka, Microglia:Neuroprotective and Neurotrophic Cells in the Central Nervous System, Current Drug Target -Cardiovascular & Hematological Disorders, vol.4, issue.1, pp.65-84, 2004.
DOI : 10.2174/1568006043481284

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo, Science, vol.308, issue.5726, pp.1314-1318, 2005.
DOI : 10.1126/science.1110647

J. Olson, A. Girvin, and S. Miller, Direct Activation of Innate and Antigen-Presenting Functions of Microglia following Infection with Theiler's Virus, Journal of Virology, vol.75, issue.20, pp.9780-9789, 2001.
DOI : 10.1128/JVI.75.20.9780-9789.2001

J. Olson and S. Miller, Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs, The Journal of Immunology, vol.173, issue.6, 2004.
DOI : 10.4049/jimmunol.173.6.3916

E. Ponomarev, L. Shriver, and B. Dittel, CD40 Expression by Microglial Cells Is Required for Their Completion of a Two-Step Activation Process during Central Nervous System Autoimmune Inflammation, The Journal of Immunology, vol.176, issue.3, 2006.
DOI : 10.4049/jimmunol.176.3.1402

E. Ponomarev, L. Shriver, K. Maresz, and B. Dittel, Microglial cell activation and proliferation precedes the onset of CNS autoimmunity, Journal of Neuroscience Research, vol.169, issue.3, 2005.
DOI : 10.1002/jnr.20488

M. Proescholdt, M. Merrill, B. Ikejiri, S. Walbridge, A. Akbasak et al., Site-specific immune response to implanted gliomas, Journal of Neurosurgery, vol.95, issue.6, pp.1012-1019, 2001.
DOI : 10.3171/jns.2001.95.6.1012

A. Rabchevsky and W. Streit, Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth, Journal of Neuroscience Research, vol.351, issue.1, pp.34-48, 1997.
DOI : 10.1002/(SICI)1097-4547(19970101)47:1<34::AID-JNR4>3.0.CO;2-G

F. Re, S. Belyanskaya, R. Riese, B. Cipriani, F. Fischer et al., Granulocyte-Macrophage Colony-Stimulating Factor Induces an Expression Program in Neonatal Microglia That Primes Them for Antigen Presentation, The Journal of Immunology, vol.169, issue.5, pp.2264-2273, 2002.
DOI : 10.4049/jimmunol.169.5.2264

C. Reis-e-sousa and R. Germain, Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis, Journal of Experimental Medicine, vol.182, issue.3, pp.841-851, 1995.
DOI : 10.1084/jem.182.3.841

R. Rock, G. Gekker, S. Hu, W. Sheng, M. Cheeran et al., Role of Microglia in Central Nervous System Infections, Clinical Microbiology Reviews, vol.17, issue.4, pp.942-964, 2004.
DOI : 10.1128/CMR.17.4.942-964.2004

A. Rodriguez, A. Regnault, M. Kleijmeer, P. Ricciardi-castagnoli, and S. Amigorena, Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells, Nat Cell Biol, vol.1, pp.362-368, 1999.

S. Sanderson and N. Shastri, LacZ inducible, antigen/MHC-specific T cell hybrids, International Immunology, vol.6, issue.3, pp.369-376, 1994.
DOI : 10.1093/intimm/6.3.369

L. Santambrogio, S. Belyanskaya, F. Fischer, B. Cipriani, C. Brosnan et al., Developmental plasticity of CNS microglia, Proceedings of the National Academy of Sciences, vol.98, issue.11, pp.6295-6300, 2001.
DOI : 10.1073/pnas.111152498

L. Shen and K. Rock, Priming of T cells by exogenous antigen cross-presented on MHC class I molecules, Current Opinion in Immunology, vol.18, issue.1, pp.85-91, 2006.
DOI : 10.1016/j.coi.2005.11.003

P. Walker, T. Calzascia, V. Schnuriger, N. Scamuffa, P. Saas et al., The Brain Parenchyma Is Permissive for Full Antitumor CTL Effector Function, Even in the Absence of CD4 T Cells, The Journal of Immunology, vol.165, issue.6, pp.3128-3135, 2000.
DOI : 10.4049/jimmunol.165.6.3128

W. Walker, J. Gatewood, E. Olivas, D. Askew, and C. Havenith, Mouse microglial cell lines differing in constitutive and interferon-??-inducible antigen-presenting activities for naive and memory CD4+ and CD8+ T cells, Journal of Neuroimmunology, vol.63, issue.2, pp.163-174, 1995.
DOI : 10.1016/0165-5728(95)00146-8

L. Walter and M. Albert, Cutting Edge: Cross-Presented Intracranial Antigen Primes CD8+ T Cells, The Journal of Immunology, vol.178, issue.10, pp.6038-6042, 2007.
DOI : 10.4049/jimmunol.178.10.6038

URL : https://hal.archives-ouvertes.fr/pasteur-01402324

C. Watts, CAPTURE AND PROCESSING OF EXOGENOUS ANTIGENS FOR PRESENTATION ON MHC MOLECULES, Annual Review of Immunology, vol.15, issue.1, pp.821-850, 1997.
DOI : 10.1146/annurev.immunol.15.1.821

W. Wick, U. Naumann, and M. Weller, Transforming Growth Factor-&#946;: A Molecular Target for the Future Therapy of Glioblastoma, Current Pharmaceutical Design, vol.12, issue.3, pp.341-349, 2006.
DOI : 10.2174/138161206775201901

J. Yewdell and J. Bennink, IMMUNODOMINANCE IN MAJOR HISTOCOMPATIBILITY COMPLEX CLASS I???RESTRICTED T LYMPHOCYTE RESPONSES, Annual Review of Immunology, vol.17, issue.1, pp.51-88, 1999.
DOI : 10.1146/annurev.immunol.17.1.51

A. Doi, 1002/glia RESUME Malgré le statut immunologique particulier du système nerveux central (SNC), l'immunothérapie active représente une approche intéressante dans le traitement des tumeurs cérébrales. Loin d'être immunologiquement muet, le SNC possède même son propre réseau de cellules immunocompétentes spécialisées : les cellules microgliales. D'origine myeloïdes, elles sont capables de jouer le rôle de cellules présentatrices d'antigènes (CPA) après activation et sont idéalement situées pour induire une réponse immunitaire cytotoxique anti-tumorale efficace La

. En-parallèle, immunothérapie active dans un modèle préclinique de tumeur cérébrale basé sur l'implantation stéréotaxique de cellules E.G7-OVA. Ce protocole se base sur l'injection de CpG-ODN, une molécule d'origine microbienne permettant d'activer les cellules du système immunitaire et plus précisément les CPA infiltrant les tumeurs, et sur l'élimination temporaire des lymphocytes T régulateurs, des cellules qui assimilent les antigènes tumoraux à des peptides du soi et conduisent à l'anergie du système immunitaire. Les résultats obtenus montrent que ce traitement induit le