M. Alemdehy and S. Erkeland, MicroRNAs, Current Opinion in Hematology, vol.19, issue.4, pp.261-268, 2012.
DOI : 10.1097/MOH.0b013e328353d4e9

M. Bousquet, M. Harris, B. Zhou, and H. Lodish, MicroRNA miR-125b causes leukemia, Proceedings of the National Academy of Sciences, vol.107, issue.50, pp.21558-63, 2010.
DOI : 10.1073/pnas.1016611107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003065

R. Delwel, Prognostically useful gene-expression profiles in acute myeloid leukemia, N Engl J Med, vol.350, pp.1617-1645, 2004.

B. Löwenberg, R. Delwel, and A. Melnick, DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia, Cancer Cell, vol.17, pp.13-27, 2010.

H. Schwarzenbach, N. Nishida, G. Calin, and K. Pantel, Clinical relevance of circulating cell-free microRNAs in cancer, Nature Reviews Clinical Oncology, vol.20, issue.3, pp.145-56, 2014.
DOI : 10.1038/nrclinonc.2014.5

J. Arroyo, J. Chevillet, E. Kroh, I. Ruf, C. Pritchard et al., Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proceedings of the National Academy of Sciences, vol.108, issue.12, pp.5003-5011, 2011.
DOI : 10.1073/pnas.1019055108

K. Vickers, B. Palmisano, B. Shoucri, R. Shamburek, and A. Remaley, MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins, Nature Cell Biology, vol.257, issue.4, pp.423-456, 2011.
DOI : 10.1073/pnas.011404098

A. Dixon-mciver, P. East, C. Mein, J. Cazier, G. Molloy et al., Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia, PLoS ONE, vol.5, issue.5, p.2141, 200814.
DOI : 10.1371/journal.pone.0002141.s006

F. Prósper, T. Kiss, and P. Brousset, Specific small nucleolar RNA expression profiles in acute leukemia, Leukemia, vol.26, pp.2052-60, 2012.

A. Santoro, Differential expression of specific microRNA and their targets in acute myeloid leukemia, Am J Hematol, vol.85, pp.331-340, 2010.

Y. Wang, Z. Li, C. He, D. Wang, X. Yuan et al., MicroRNAs expression signatures are associated with lineage and survival in acute leukemias, Blood Cells, Molecules, and Diseases, vol.44, issue.3, pp.191-198, 2010.
DOI : 10.1016/j.bcmd.2009.12.010

K. Wang, S. Zhang, J. Weber, D. Baxter, and D. Galas, Export of microRNAs and microRNA-protective protein by mammalian cells, Nucleic Acids Research, vol.38, issue.20, pp.7248-59, 2010.
DOI : 10.1093/nar/gkq601

D. Schotte, J. Chau, G. Sylvester, G. Liu, C. Chen et al., Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia, Leukemia, vol.16, issue.2, pp.313-335, 2009.
DOI : 10.1038/leu.2008.286

J. Gabert, E. Beillard, V. Van-der-velden, W. Bi, D. Grimwade et al., Standardization and quality control studies of ???real-time??? quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia ??? A Europe Against Cancer Program, Leukemia, vol.17, issue.12, pp.2318-57, 2003.
DOI : 10.1038/sj.leu.2403135

N. Boissel, A. Renneville, V. Biggio, P. N. Thomas, X. Cayuela et al., Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype, Blood, vol.106, issue.10, pp.3618-3638, 2005.
DOI : 10.1182/blood-2005-05-2174

M. Nakao, S. Yokota, T. Iwai, H. Kaneko, S. Horiike et al., Internal tandem duplication of the flt3 gene found in acute myeloid leukemia, Leukemia, vol.10, pp.1911-1919, 1996.

T. Pabst, B. Mueller, P. Zhang, H. Radomska, S. Narravula et al., Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia, Nature Genetics, vol.27, issue.3, pp.263-70, 2001.
DOI : 10.1038/85820

A. Biondi, CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint, Leukemia, vol.9, issue.9, pp.1461-1467, 1995.

P. Lin, Expression of CD2 in Acute Promyelocytic Leukemia Correlates With Short Form of PML-RAR?? Transcripts and Poorer Prognosis, American Journal of Clinical Pathology, vol.121, issue.3, pp.402-409, 2004.
DOI : 10.1309/XC8P9M8NKQDT38LB

A. Feinberg and B. Tycko, The history of cancer epigenetics, Nature reviews, pp.143-153, 2004.

A. Paldi and J. J. , Eléments chromosomiques contrôlant l'empreinte parentale des gènes. Medecine sciences, pp.189-91, 1996.
DOI : 10.4267/10608/710

D. Rocha and S. , Genomic imprinting at the mammalian Dlk1-Dio3 domain, Trends in Genetics, vol.24, issue.6, pp.306-322, 2008.
DOI : 10.1016/j.tig.2008.03.011

A. Gabory and L. Dandolo, Epignétique et développement : l'empreinte parentale. Médecine sciences, pp.390-395, 2005.

L. Benetatos, The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis, Cellular and Molecular Life Sciences, vol.26, issue.6, pp.795-814, 2013.
DOI : 10.1007/s00018-012-1080-8

F. Manodoro, Loss of imprinting at the 14q32 domain is associated with microRNA overexpression in acute promyelocytic leukemia. Blood, pp.2066-74, 2014.

Y. Chung and E. Schatoff, Epigenetic alterations in hematopoietic malignancies, International Journal of Hematology, vol.483, issue.7100, pp.413-427, 2012.
DOI : 10.1007/s12185-012-1181-z

T. Schoofs and C. Müller-tidow, DNA methylation as a pathogenic event and as a therapeutic target in AML, Cancer Treatment Reviews, vol.37, issue.37, pp.13-18, 2011.
DOI : 10.1016/j.ctrv.2011.04.013

R. Lee, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, issue.5, pp.843-854, 1993.
DOI : 10.1016/0092-8674(93)90529-Y

URL : https://hal.archives-ouvertes.fr/in2p3-00597159

B. Wightman, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, pp.855-862, 1993.

J. Krol, The widespread regulation of microRNA biogenesis, function and decay, Nature Reviews Genetics, vol.36, issue.9, pp.597-610, 2010.
DOI : 10.1038/nrg2843

H. Schwarzenbach, Clinical relevance of circulating cell-free microRNAs in cancer, Nature Reviews Clinical Oncology, vol.20, issue.3, pp.145-56
DOI : 10.1038/nrclinonc.2014.5

P. Mitchell, Circulating microRNAs as stable blood-based markers for cancer detection, Proceedings of the National Academy of Sciences, vol.105, issue.30, pp.10513-10521, 2008.
DOI : 10.1073/pnas.0804549105

E. Kroh, Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, pp.298-301, 2010.

S. Mi, MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia, Proceedings of the National Academy of Sciences, vol.104, issue.50, pp.19971-19977, 2007.
DOI : 10.1073/pnas.0709313104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2148407

H. Seca, miR signatures and the role of miRs in acute myeloid leukaemia, European Journal of Cancer, vol.46, issue.9, pp.1520-1527, 2010.
DOI : 10.1016/j.ejca.2010.03.031

V. Havelange, Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML. Blood, Apr, vol.10, issue.12315, pp.2412-2417, 2014.

S. Schwind, , in Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study, Journal of Clinical Oncology, vol.28, issue.36, pp.5257-64, 2010.
DOI : 10.1200/JCO.2010.29.2953

Z. Li, Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood, pp.2314-2338, 2012.

R. Liersch, Prognostic factors for acute myeloid leukaemia in adults - biological significance and clinical use, British Journal of Haematology, vol.53, issue.1, pp.17-38
DOI : 10.1111/bjh.12750

R. Popovic, Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization, Blood, vol.113, issue.14, pp.3314-3336, 2009.
DOI : 10.1182/blood-2008-04-154310

A. Dixon-mciver, Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. Plos One, 200814.

L. Liu, Activation of the Imprinted Dlk1-Dio3 Region Correlates with Pluripotency Levels of Mouse Stem Cells, Journal of Biological Chemistry, vol.285, issue.25, pp.19483-90, 0285.
DOI : 10.1074/jbc.M110.131995

J. Luk, DLK1-DIO3 Genomic Imprinted MicroRNA Cluster at 14q32.2 Defines a Stemlike Subtype of Hepatocellular Carcinoma Associated with Poor Survival, Journal of Biological Chemistry, vol.286, issue.35, pp.30706-30719, 2011.
DOI : 10.1074/jbc.M111.229831

Y. Zhang, MicroRNA-323-3p Regulates the Activity of Polycomb Repressive Complex 2 (PRC2) via Targeting the mRNA of Embryonic Ectoderm Development (Eed) Gene in Mouse Embryonic Stem Cells, Journal of Biological Chemistry, vol.288, issue.33, pp.23659-65, 2013.
DOI : 10.1074/jbc.M113.475608

H. Valadi, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nature Cell Biology, vol.175, issue.6, pp.654-663, 2007.
DOI : 10.1002/pmic.200400876

K. Wang, Export of microRNAs and microRNA-protective protein by mammalian cells, Nucleic Acids Research, vol.38, issue.20, pp.7248-59, 2010.
DOI : 10.1093/nar/gkq601

G. Cammarata, Differential expression of specific microRNA and their targets in acute myeloid leukemia, American Journal of Hematology, vol.105, pp.331-340, 2010.
DOI : 10.1002/ajh.21667

H. Hock, Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells, Nature, vol.85, issue.7011, pp.1002-1009, 2004.
DOI : 10.1038/371221a0

H. Zeng, Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells, The EMBO Journal, vol.16, issue.20, pp.4116-4141, 2004.
DOI : 10.1016/S1074-7613(02)00317-5