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1.1 Deformable pair-wise image registration [53]. Left image:
Overlapping between the source (I) and target (J) images, before
registration. As it can be observed, the alignment between the
images is not perfect. Right image: Overlapping between the
deformed source image and the target, after registration. The
deformable registration algorithm recovered a deformation field
T(x) that was applied to the source image, in order to align them. 5

1.2 Discrete labelling in deformable image registration [53]. Dif-
ferent type of sampling strategies for the discrete label space
used for image registration: sparse (left image) and dense (right
image). Note that every label in this formulation corresponds
to a displacement vector (in orange).

1.3 Deformation grid superimposed on an image [53]. Deformable
registration is formulated as a discrete labeling problem on a
grid-graph, superimposed to the source 2D image. The nodes
of the graph correspond to the variables of a Markov Random
Field, and model the control points of a FFD. The space of plau-
sible deformations is explored by choosing different labelings. 10
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extracellular space. Moreover the cell membranes are intact,
thus they act as barrier to water movement. Right image: This
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Tissue characterization by diffusion-weighted images [95].
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Apparent diffusion coefficient (ADC) [95]. Left inage: This
simplified schematic shows derivation of ADC. Logarithm of
relative signal intensity is plotted on y-axis against values on x-
axis. Slope of line fitted through plots is ADC. In this example,
slope of line (ADC) is smaller for tumor (gray line) than for
normal liver (black line). Central and right image: Here we
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Chapter 1

Introduction

The present work lies at intersection of Medical Image Analysis and Computer
Vision. It examines the probem of motion estimation, which is a significant
challenge in 4D medical imaging (4DMI) and 4D radiation therapy (4DRT).
In the former process multiple 3D images of a patient are acquired over time
prospectively or retrospectively, in order for the patient motions and changes
to be monitored and studied. 4DMI includes volumetric over time CT, MRI,
PET, PET/CT, SPECT and US imaging. 4DRT on the other hand, aims to
track and compensate for target (lesion) motion during radiation treatment,
minimizing normal tissue injury, especially in critical structures adjacent to
the target, and/or maximizing radiation dose to the target. Besides possible
patient motion, involuntary organs’ motion is inevitably present in these
processes, producing artifacts and uncertainties in target identification,
delineation, and localization.

Manual motion estimation, that would lead to motion correction, from a
time series of images is impractical, as it consists of a tedious task. Corre-
sponding landmark positions in time need to be determined and depending
on the application of interest the number of required landmarks may be
very large. Image registration methods are often applied to automate this
process. In case of 4DMI, the goal of an image registration method would
be to establish accurate dense spatial correspondences among successive
images of the same subject acquired over time and in that way align (ideally
simultaneously) all the images into a consensus space. Such an image
registration method is characterized as group-wise. Prior knowledge on the
way the shape of an organ and/or its appearance profile change(s) over time
should be also taken into account during registration. Specifically, due to
non-linear physiological motion, non-linear alignment of the images in the
sequence becomes necessary, a problem referred to as deformable image
registration. Along with image segmentation, deformable image registration
to directly measure or compensate for local tissue motion, is still one of
the most important problems in the field of image processing. The problem
becomes even more challenging when a sequence instead of a pair of images
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needs to be co-registered simultaneously, as in the case of motion estimation
in 4DMI.

In this introductory chapter, we first give a brief description of the context
of this work, followed by an introductory section on medical image registra-
tion (1.2). Next in section 1.3, after having introduced the main challenges
posed by the current technological and methodological advances, we present
the main ideas of this work. Then in section 1.4 the medical problem, that
motivated the research presented in this thesis, is briefly described. Finally,
section 1.5 gives an overview of the work done in the context of this thesis.

1.1 Context

In 4DMI a fourth dimension is introduced beyond the 3D space, which is the
time dimension. In this fourth dimension, patient motion and change are
recorded. Historically, the time dimension was incorporated into 3D medical
imaging through the application of respiration gating soon after the 3D imag-
ing technique was invented and long before the fast 3D imaging techniques
with sufficient temporal resolution were available [174, 77, 52, 228, 102,
105]. Then the concept of 4DRT was introduced [186, 184, 119] with the
availability of 4D imaging. The span of applications of 4DMI stretches from
correcting motion artifacts, studying internal organ motion, and providing
clinically meaningful quantitative volumetric image information by pharma-
cokinetic or physiological models for radiological diagnosis, to treatement
planning and treatement delivery in 4DRT [116]. It is by considering this
extreme variety of applications that one can understand the importance of
4DMI in medical research and clinical practice. Investigating its limitations
and coping with the challenges that have arised on improving its accuracy,
will help in making 4DMI a powerful imaging tool applied efficiently in clinical
practice.

The main challenge gradually recognised by researchers working on ad-
vancing 4D imaging and 4D conformal radiation therapy techniques is to
tackle the effects of organs’ motion, mainly due to cardiac motion, respiration,
peristaltic motion, digestion, and muscular motion [228, 208, 105]. Due to
motion, anatomical structures in consecutive images are misaligned. Various
techniques have been developed over the years and implemented in clinical
practice, that involve physical intervention, including patient immobilization,
breath holding, active breathing control (ABC), breath coaching, as well as
real-time intervention by the user (radiologist), such as respiratory gating
and respiratory motion tracking, towards removing such motion artifacts.
Even if these techniques have enhanced the performance of 4DMI, they were
never adequate for achieving high-fidelity images.

Towards this scope, image processing becomes necessary. More specif-
ically, a vast amount of work on developing deformable image registration
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methods, that incorporate in their framework mathematical and statistical
models that model organs’ motion and image intensity variation, has been
emerged over the years [175]. Currently however, deformable image regis-
tration may have some distance to go before it can be routinely used in the
clinic, due to its long iterative optimization (taking several hours) and the
difficult validation process.

Among the various modalities included in 4DMI, this work deals with
volumetric over time (4D) MRI. MRI can be acquired with different contrast
weightings and together these images provide information about the anatomy,
function and pathology. Such a piece of information is provided through
the computation of parametric maps, that depict meaningful physical or
chemical variables that characterize the physical or chemical processes
taking place during image acquisition. The values of these variables or
so-called quantitative parameters are estimated by fitting a parametric phar-
macokinetic or physiological model to a series of contrast-weighted images.
These values are estimated in physical units, allowing thus for comparisons
between tissue regions and among subjects. Such maps increase the sen-
sitivity of clinical MRI in detecting pathology, by allowing the comparison
of measurements in a single subject with normative values acquired in a
healthy population, as well as monitoring subtle changes caused by the
progression or remission of disease [158]. Examples are Diffusion Tensor
MRI (DTI), Dynamic Contrast-Enhanced MRI (DCE-MRI), MR relaxometry
(T1 and T2 mapping) and Diffusion-Weighted MRI (DWI). Any parametric
model assumes that the same tissue is present at a specific voxel in each
of the images. If this is not the case, estimation of the tissue parameters
will be corrupted. Therefore, aligning the images prior to parameter estima-
tion is necessary and for this purpose image registration techniques can be
employed.

1.2 Medical Image Registration

Image registration is the process of finding the optimal transformation that
aligns different imaging data into spatial correspondence, so that after reg-
istration, the same anatomic structures occupy the same spatial locations
in different images. In general, two or more images are considered. It is a
problem that has been studied a lot over the past few decades, as it consists
of the building block for a variety of medical image analysis tasks. Image
registration methods had been classified by Maintz and Viergever in their
influential article of 1998 [130], with the following criteria: (i) dimensionality
(spatial or spatiotemporal 2D to 2D, or 2D to 3D, or 3D to 3D), (ii) nature
of the registration basis (extrinsic, intrinsic, non-image based), (iii) nature
of the transformation (rigid, affine, projective, curved), (iv) domain of the
transformation (global, local), (v) degree of interaction (interactive, semi-
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automatic, automatic), (vi) optimization procedure (parameters computed
or searched for), (vii) modalities involved (mono-modality, multi-modality,
modality to model, patient to modality), (viii) subjects involved (intra-subject,
inter-subject, atlas), and (ix) objects involved (e.g., brain, heart, breast).
Interestingly, the classification of the field introduced in that article is still
usable, although some changes have occured since then.

The main change has been the shift from extrinsic to intrinsic registra-
tion. The approach of placing external reference points (fiducial markers),
introduced into the images space in identical relationship to patient anatomy,
is hardly found anymore and it characterizes only a restricted number of
applications, as it often lacks of reliability and induces concomitant errors.
The vast majority of the image registration methods nowadays are intrinsic
methods that rely on the patient image data only, thus allowing retrospective
co-registration. In this doctoral thesis, we are examining only methods clas-
sified as intrinsic ones. Furthermore, intensity-based registration methods
have gained the primacy among the landmark-based or the surface-based,
which were the most often used type of intrinsic registration at that time.
Computational hurdles to applying voxel-based registration have rapidly
diminished and therefore the full image contents are taken into account
instead of relying on segments of image objects that subsequently have to
be aligned. Moreover, other worth-mentioning changes since that early liter-
ature review is the progress of inter-subject registration and the availability
of generic image registration software packages. Other general reviews of
the field may be found in [28, 76, 201, 249, 94, 188, 2]. These surveys
and reviews deal mostly with 3D to 3D or 2D to 2D image registration. For
a survey on slice-to-volume mapping (2D to 3D registration) we refer the
interested reader to the thesis of Enzo Ferrante [53].

This section, which consists of an introduction to medical image registra-
tion, is divided following the standard structural separation of registration
algorithms in three components: (i) a transformation model; (ii) an objective
function; and (iii) an optimization strategy.

1.2.1 Transformation Model

The most fundamental characteristic of any image registration method is
the type of spatial (or spatio-temporal in case of time-evolved or longitu-
dinal sequences) geometric transformation or mapping needed to properly
co-register and align the images. The choice of the geometric transformation
is of great importance, especially for the group-wise registration process is
due to the fact that it affects the computational efficiency and the richness
in terms of description of the method; a good compromise between these
two issues is always opted. The transformation model reflects the class of
transformations that are desirable or acceptable, and therefore limits the
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(a) (b)

Figure 1.1: Deformable pair-wise image registration [53].

Left image: Overlapping between the source (I) and target (J) images, before registration. As it can be observed,
the alignment between the images is not perfect. Right image: Overlapping between the deformed source image
and the target, after registration. The deformable registration algorithm recovered a deformation field T(x) that
was applied to the source image, in order to align them.

solution to a large extent. Transformation models are often characterized by
their degrees of freedom, or in other words, the number of parameters the
registration estimates through the optimization strategy. Two basic models
can be discriminated, rigid and non-rigid transformations. In case of defor-
mations, which belong to the non-linear (non-rigid) class of transformations,
they can be further classified according to their theoritical basis [188].

Rigid
The original focus of image registration had predominantly been on correcting
for rigid-body motion of brain image volumes acquired at different scanning
sessions, often with different modalities. In the "rigid-body" case there
are six degrees of freedom (or unknowns) in the 3D transformation: three
translations and three rotations. Therefore, they are equivalent to a change
from one Cartesian system of coordinates to another one which differs by
shift and rotation. The key characteristic of a rigid-body transformation is
that the distance between all points in the image is preserved. This kind of
transformation model is most of the times applied to longitudinal studies of
the brain, as the shape of the human brain changes very little with head
movement [196, 247, 166, 217].

Moreover, subject’s movement inside the scanner during image acquisition
is also considered as a rigid motion. In [183] and [117] a rigid intra-subject
alignment of 3D brain images acquired at different (consecutive) time-points
is applied as a prior to a non-rigid inter-subject deformation scheme step.
The authors note that this step removes variations in patient positioning
in the scanner and facilitates the subsequent non-rigid image registration.
A rigid groupwise registration approach is also followed in [29] to track the
motion of tumors in DCE-MRI sequences, under the assumption that tu-



6 Introduction

mors are more rigid than their surrounding tissues, a claim that can be
true for solid tumors having higher interstitial pressure than most normal
tissues and therefore greater rigidity [147]. That latter assumption though
doesn’t hold true in case of large tumors. In general, rigid-body registra-
tion is preferred in cases where the structures of interest are either bone
or are enclosed in bone, as it is the case of the head, and in particular
the brain. Rigid body registration is used for other regions of the body in
the vicinity of bone (e.g. the neck, pelvis, leg or spine) but the errors are
likely to be larger, like in the case of Bidaut and Vallée [21] that applied
rigid-body transformation on cardiac dynamic MRI to co-register the images
of the sequence. Even if intensity information is used in the framework and
the anatomy doesn’t change over time (case of intra-subject registration), a
simple rigid-body transformation model that assumes only translations isn’t
an appropriate one for estimating the motion of the heart. As denoted in
[41], a rigid registration is not enough in practice to correct for breathing
motion. The most convincing reason is the existence of transversal motion.

Non-rigid
The advent of dedicated longitudinal and cross-sectional brain studies soon
necessitated the development of more sophisticated methods that are able
to detect and measure local structural or functional changes, or group dif-
ferences. Moving outside of the brain, cine imaging and dynamic imaging
required the development of non-rigid image registration to directly measure
or compensate for local tissue motion. By non-rigid transformations one
refers to those models which perform -at some extent- changes in the struc-
ture of the images. These changes vary from simple operations -which can
still be modeled using linear (affine) transformations, such as scale, flip or
shear- to more complex models that produce local deformations (deformable,
initially called curved models).

Linear transformations are the first step towards non-rigid registration.
Some registration algorithms increase the number of degrees of freedom by
allowing for anisotropic scaling (giving nine degrees of freedom) and skews
(giving 12 degrees of freedom). A transformation that includes scaling and
skews as well as the rigid body parameters is referred to as affine, and has
the important characteristics that it can be described in matrix form and
that all parallel lines are preserved (affine deformations map parallel lines
to parallel lines). A rigid body transformation can usefully be considered
as a special case of affine, in which the scaling values are all unity and the
skews all zero. Affine and rigid-body transformations can be conveniently
represented using homogeneous matrices, these are 4-by-4 matrices for 3-D
to 3-D mappings. The use of an affine transformation rather than a rigid
body transformation does not greatly increase the applicability of image
registration, as there are not many organs that only stretch or shear. Tis-
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sues usually deform in more complicated ways. There are, however, several
scanner introduced errors that can result in scaling or skew terms, and
affine transformations are sometimes used to overcome these problems, an
approach followed by many studies prior to the application of a deformable
registration scheme [121, 210, 19, 176, 12, 235, 232, 82, 126, 211, 127].
In fact Crum et al. [43] point out that some approaches like in [86], that opt
for a non-rigid registration, wrongly assume that good affine registration
already exists for the population.

However, for most organs in the body many more degrees of freedom are
necessary to describe the tissue deformation with adequate accuracy. Even
in the brain, development of children, lesion growth or resection can make
an affine transformations inadequate and deformable registration becomes
necessary. The term deformable (as opposed to linear or global) is used to
denote the fact that the observed signals are associated through a non-linear
dense transformation, or a spatially varying deformation model. The problem
consists of recovering a local transformation that aligns two or more signals
that have in general an unknown relationship both in the spatial and in the
intensity domain. In certain situations the deformation model is known,
e.g., the geometrical distortion of the imaging system, but in most cases it is
unknown. Therefore the number of parameters to be estimated can vary a
lot and reach up to millions, when non-parametric dense transformations
are considered. Increasing the dimensionality of the state space results in
enriching the descriptive power of the model. This model enrichment may
be accompanied by an increase in the model’s complexity which, in turns,
results in a more challenging and computationally demanding inference. A
review on non-rigid registration can be found in [135, 78, 188].

1.2.2 Objective Function

In the simple case of pairwise image registration, which involves only two
images, one image is usually referred to as source or moving image, while the
other is referred to as target or fixed image. The goal then is the estimation
of the optimal spatial transformation that maps homologous locations from
the target physiology to the source physiology, by minimizing an energy cost
function. Let the source image be denoted by I: Q; ¢ RY — R, while the
target image by J: Q; C R? — R, with d = 2,3. The source image undergoes a
transformation 7 : Q; — R?. The transformation at every position x € Q (Q
depicting the image domain) is usually defined using a dense deformation
field D : R? — RY (relative with respect to the current position), mapping
every position x € Q from image / to its corresponding position  (x) in image
J:

I (x) =x+D(x) (1.1)
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Then the optimal transformation is achieved by means of an energy mini-
mization problem:
argmin # (1,J 0 7 (6)) + Z(T (6)). (1.2)
6

We see that the cost function is the combination of two terms; ./ is the
data dissimilarity function that quantifies the level of alignment between
the two images under the influence of transformation J parameterized by
0, whereas % regularizes the transformation, by assigning high cost to
undesirable transformations, e.g. high local streching or bending, or folding
of transformation.

Regularization accounts for the ill-posedness of the problem of registration.
In the case of rigid-body registration the regularization term is omitted, but
in case of non-rigid and especially non-affine (non-linear) registration this
term is very important. Regularizing the transformation is important not
only to tackle the difficulty associated with the ill-posedness of the problem,
but also due to the aim to favor specific properties in the solution that
the user requires. Especially for biomedical applications, imposition of
specific constraints that may be applied to the transformation, such that it
exhibits special properties, are of great importance. Such properties include,
but are not limited to inverse consistency, symmetry, topology preservation
and diffeomorphicity. A wealth of methods have enforced diffeomorphic
mappings, inspired mostly by the classical Demons approach of Vercauteren
et al. [213], who had first proposed a variant of Thirion’s algorithm [205]
endowed with the diffeomorphic property. In brief, a dense deformation field
is optimized using local image forces, alternated with Gaussian smoothing of
the deformation field for regularization. Another classical popular pair-wise
registration method assuring symmetry is the consistent image registration
by Christensen and Johnson [36], in which a linear-elastic constraint is
considered on both the forward and the inverse transformation. Finally, the
symmetric log-diffeomorphic demons [212] combines diffeomorphism and
symmetry principles.

1.2.3 Optimization Strategy

The aim of optimization is to infer the optimal transformation(s) that best
(co-)align(s) the images of the population/sequence according to an objective
function comprising a matching term and a regularization term (see above
subsection 1.2.2). As a consequence, the choice of the optimization methods
impacts the quality of the obtained result.

Optimization methods may be separated into two main categories based
on the nature of the variables that they try to infer: i) continuous, and ii)
discrete. The first class of methods solves optimization problems where the
variables assume real values. On the contrary, methods in the second class
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Figure 1.2: Discrete labelling in deformable image registration [53].
Different type of sampling strategies for the discrete label space used for image registration: sparse (left image)
and dense (right image). Note that every label in this formulation corresponds to a displacement vector (in orange).

X

solve problem the variables take values from a discrete set. Both classes
share the constraint of being dependent on the nature of the objective func-
tion and the structure to be optimized. Heuristic and metaheuristic don’t
have this constraint, though they do not enjoy theoretical guarantees regard-
ing the optimality of the solution.

Continuous

In the vast majority of the medical image registration methods, the deforma-
tion variables are assumed to be real values and the objective function is
designed in a continuous formulation, while continuous optimization meth-
ods are employed. In this case, the objective function should be differentiable,
which consists of a basic constraint on using continuous optimization meth-
ods. The latter ones estimate the optimal parameters following an update
rule of the following form:

041 =0+ 048:(6) (1.3)

where 6 is the vector of parameters of the transformation, ¢ indexes the
number of iteration, o denotes the step size or gain factor, and g defines
the search direction. The way the previous parameters is chosen to be com-
puted distinguishes the different optimization methods existing of this class.
There exist various optimization methods, the most popular class being the
gradient descent methods. We refer the interested reader to the survey of
Sotiras et al. [188] for an overview of the various classes and sub-classes of
continuous optimization methods.

Discrete
Over the last years, discrete methods and graphical models, have been em-
ployed to address many vision tasks [150], including deformable registration
[58], through the use of a particular class of graphical models, the Markov
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Figure 1.3: Deformation grid superimposed on an image [53].

Deformable registration is formulated as a discrete labeling problem on a grid-graph, superimposed to the source
2D image. The nodes of the graph correspond to the variables of a Markov Random Field, and model the control
points of a FFD. The space of plausible deformations is explored by choosing different labelings.

Random Fields (MRF) [219]. Such an approach is a simple yet robust and
efficient way to model the problem. MRF is a powerful modeling tool, that
corresponds to an undirected graph G encoding a probability distribution
governed by the local independence assumption (also known as local Markov
or markovian property). Each node of this graph represents a variable from
the probability distribution. Dependence among the variables is modeled us-
ing the graph neighboring system, meaning that two variables are dependent
of each other if and only if there is an edge between them. This dependency
can be extended from order two to any order, through the concept of clique. A
clique is defined as a set of fully connected nodes; therefore, all the variables
represented by nodes in a given clique depend on each other. The Markov
property imposes that a node is independent of any other node given all its
neighbors. This holds for any distribution that can be represented by a MRF.

Formally, a MRF is an undirected graph G =< V E >, where V is a set of
nodes (every node i € V is associated to a variable x; € X representing a control
point) and E is a regular grid (2D or 3D depending on the dimensionality of
the images). The neighboring system can be either a 4-connected (sparse)
or a 8-connected (dense) one in case of 2D registration, and a 6-connected
or a 26-connected one in case of 3D registration (where edges connecting
nodes along the z axis are added to the standard system for the 2D case).
The edges (i, j) € E are used to impose smoothness on the deformation field
and render the problem well posed.

The label space L consists of labels /; € L associated to d-dimensional
displacement vector d;, € %¢ (i.e. the integer label /; could be seen as an
index value for the displacement vector d;). Several strategies can be used to
discretize the space. Two common approaches are the so-called dense and
sparse sampling (illustrated in figure 1.2). When we assign a label /; to a
node i, the control point p; is moved according to the displacement vector dj,.
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A labeling I" assigns one label /; to every node i € V. Recall that every discrete
label J; is associated to a d-dimensional displacement vectors d;,. Thus, D'
is defined as the set formed by the displacement vectors associated to the
labeling I'. Hence, by considering different labelings I', one can explore a
discretized version of the naturally continuous space of deformation fields
(see example in Figure 1.3). For example, let us consider a simple 2D label
space formed by 5 labels L = {0,1,2,3,4}. We assign to every label a vector of
length 1 in each direction (according to the sparse sampling shown in figure
1.2 together with the null vector. Therefore, the vectors associated to every
label would be: dy = (0, 0), d; = (1, 0), d» = (0, 1), d3 = (-1, 0), dy = (O, -1). If
we are dealing with a graph of 6 nodes, then the labeling I" = {1,3,3,2,1,2}
is interpreted as the following control point based representation of the
displacement field D' = {d|,d3,d3,d>,d;,d>}.

The search across this space is guided by the minimization of the MRF
energy defined as:

ET:GF) =Y gp(l)+ Y, fijllil)) (1.4)

pev (i.j)€E

where I' is a labeling assigning one label /; to every node i € V, G are the
unary potentials playing the role of data (or matching) terms and F are the
pair-wise terms acting as regularizers of the estimated deformation field. The
MAP inference problem (a discretized version of the continuous formulation
from equation 1.2, where G = g;(-),.y is associated to data terms M and
F = f;j(-,-)(i, ) € E to regularization terms R) is therefore defined as:

F_argmmE(F G.F)=argmin ) gi(l)+ Y. fi;j(li1)) (1.5)
I iev (i.j)eE

The data term measures the matching quality (according to the similarity
measure) between the deformed source image 7 and the target image J, given
the displacement vectors. Any matching criterion, i.e. iconic, geometric,
hybrid, feature vector-based, can be considered. The data term is the driving
force of the optimization process. However, even if the matching criterion is
optimally minimized, the resulting deformation field could be erroneous from
geometrically view point. The regularization term plays a key role in this
process, since it imposes geometrical and smoothness constraints towards
anatomically realistic solutions. It is defined as a pairwise term acting on
the two labels (displacement vectors) assigned to neighbor nodes. Using
pairwise terms, one can encode different smoothness constraints, such as
the standard Pott’s model (penalizes deviations in the displacement assign-
ment), truncated absolute or quadratic difference (penalize the magnitude
of the vectors difference up to a bound), approximated curvature penalty
(approximates a second order derivative of the displacement field) or the
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distance preserving approach (penalizes changes in the distances between
neighboring control points with respect to their initial position) [56]. Let us
illustrate, for example, the distance preserving approach, defined as the ratio
between the current position of the control points p;, p; and their original
position p,;, po,;.

[(pit+di,) — (pj+di)l|

(o) = (Po Il
As mentioned, alternative definitions could be considered for this term, de-
pending on different constraints and domain specific restrictions.

The final dense deformation field 7 is interpolated from the set of displace-
ment vectors u! associated to the parameters I", i.e. an interpolation strategy
acting on the displacement of these control points is used to reconstruct the
final solution. Given a set of control point displacements D =d,...,d;, the
dense deformation field D(x) used in equation 1.1 is reparameterized as:

fij(liyl;) = (1.6)

k
D(x) =Y np(x)dy, (1.7)
p=1
and the transformation 7 becomes:
T(x)=x+ Y Mp(x)dp, (1.8)

where 1, is the weighting function corresponding to control point p. It de-
termines the influence of a control point p; to the image point x - the closer
the image point the higher the influence of the control point. The actual
displacement of an image point is then computed via a weighted sum of
control point displacements. A dense deformation of the image can thus be
achieved by manipulating a few control points and in general by moving the
grid’s control points, one ends up deforming the images. The parametrization
of the deformation field leads naturally to the definition of a set of discrete
deformation elements. Instead of seeking a displacement vector for every
single image point, only the displacement vectors for the control points need
to be sought. A common choice to define these weighting factors is the use of
B-splines, resulting in the well-known Free Form Deformation (FFD) model,
popularized in the medical image registration community by Rueckert et al.
[173]. They adopt a regular grid as parametric model. Every control point
contributes locally to the interpolation function. Other interpolation models
like Thin-Plate Splines (TPS), proposed by Bookstein [24], could be adopted.
TPS minimize the bending energy assuming infinite boundary conditions.
Through the use of TPS a smooth transformation is generated. The local
support for deformations and inherent computational efficiency make FFDs a
good choice to deal with deformable image registration in a discrete scenario.
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A common strategy to improve the accuracy of the method and increase
its capture range consists in using a pyramidal approach. It allows a pro-
gressive search space exploration, while keeping low complexity. The idea is
to start with displacement vectors with important distance and progressively
reduce their spread, centering them around the current solution. It is clear
that increasing the number of labels to infinity will converge to a continuous
formulation. Since this is intractable from computational perspective [57],
the idea behind this approach is to iteratively compose several deformation
fields, while refining the grid of nodes and the label space, so that big as
well as small local deformations are captured. At every iteration a fixed label
space and constant number of grid nodes are considered, MAP inference for
equation 1.5 is performed, while the resulting deformation field is composed
with the previous one.

As presented above, deformable image registration was formulated as
MAP inference problems, which can be solved through discrete optimization.
Discrete optimization of MRFs is, in general, an NP-hard problem [185].
However, in special cases, it can benefit from very efficient solutions. The
trivial brute force algorithm (i.e. trying all possible combination of labels for
each and every variable) has an exponential complexity that makes such an
approach unsuitable. More efficient algorithms have been developed during
the last two decades which boosted the use of graphical models in the field of
computer vision. They can be classified in three main categories according
to Kappes et al. [91]: (i) polyhedral and combinatorial methods, (ii) message
passing methods and (iii) move-making algorithms.

The first ones solve a continuous linear programming (LP) relaxation of
the discrete energy minimization problem. The central idea is to relax the
integrality condition of the variables in order to simplify the problem. Once
the integrality constraint is relaxed, standard linear programming methods
can be applied to solve the optimization problem, and rounding strategies
are used to recover the integral solution. Examples of such approaches are
Linear Programming Relaxations over the Local Polytope, Quadratic Pseudo
Boolean Optimization (QPBO) [168] and Dual Decomposition [97].

On the other hand, message passing methods, are optimization methods
in which messages are calculated and propagated between nodes in a graph.
This propagation can be seen as a re-parametrization of the original problem
aiming to establish special properties in the re-weighted function that makes
inference easier. Examples are the standard Loopy Belief Propagation (LBP)
[143] and Three Re-weighted Belief Propagation (TRBP) [218].

Finally, Max-flow and move-making algorithms make use of the well know
max-flow min-cut [26] algorithm from graph theory, which can optimally
solve some instances of discrete energies. These methods are usually com-
bined with greedy strategies that iteratively minimize over the label space
by solving a sequence of max-flow min-cut sub-problems. Examples are o-
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expansion, aff swap [27] and FastPD [99] algorithms. Simpler move-making
algorithms not using max-flow, but still applying the strategy of starting with
an initial labeling and iteratively moving to a better one until a convergence
criterion is met, are the classical Iterated conditional modes (ICM) [17] and
its generalization Lazy Flipper [7]. An overview of the work that has been
done in the area of inference algorithms on graphical models, as well as,
their use to address the fundamental problem of biomedical image analysis,
can be found in [149].

1.3 Statement

The vast range of potential applications as well as the technological advances
create a dynamically changing environment that poses important challenges.
Correspondence estimation algorithms must be computational efficient, op-
erate even on real-time constraints, and highly versatile. Moreover, especially
in clinical settings, the solution they provide should exhibit certain desired
properties to facilitate or even allow for reliable subsequent processing.

The main reason that fuels the need for efficiency is the fact that the
volume of acquired data grows with a fast rate, with medical imaging be-
coming a standard clinical practice. A second challenge is revealed if we
consider either the vast range of problems to be tackled or the new imaging
devices introduced in the clinical practice resulting in images with different
properties. In its essence, the problem is always the same, establishing
correspondences between two or more images. Thus, one should expect that
an appropriate solution to it should be versatile enough to be used for any
of the previous applications or image modalities. This underlines the need
for modularity with respect to the main components of the algorithms.

The broad purpose of this thesis is to develop novel methods to perform
group-wise deformable image registration, in order to tackle the problem of
recovering correspondences among volumetric over time medical images in
an efficient and modular way. To respond to the needs advocated earlier,
efficient approximation schemes have been devised to achieve a good balance
between accuracy and efficiency. In an effort to render the proposed algo-
rithms both more efficient and modular, discrete optimization techniques
based on a Markov Random Field formulation of the problem have been
chosen.

On top of developing group-wise deformable registration methods, we
also demonstrate how motion correction contributes to the extraction of
meaningful imaging biomarkers in DWI. DWI provides functional information
(i.e. diffusivity of water molecules) and is able to highlight both oncological
and non-oncological lesions throughout the entire body [106]. DWI could
add complementary information to the current state-of-the-art imaging tech-
nique in lymphoma patient management. To this end, we are seeking to
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Figure 1.4: Diffusion of water molecules [95].

Left image: This is a drawing of restricted diffusion. Drawing represents 1 voxel of tissue evaluated by Diffusion-
Weighted Imaging (DWI) containing cells and blood vessel. The black circles with arrows represent the water
molecules within extracellular space, intracellular space, and intravascular space, all of which contribute to
measured MR signal. There are two causes of the restriction. One cause is the observed high cellularity, which
results into a reduced extracellular space. Moreover the cell membranes are intact, thus they act as barrier to
water movement. Right image: This is a drawing of free diffusion. Here we observe low cellularity and defective
cell membranes. In less cellular environment, relative increase in extracellular space allows freer water diffusion
than more cellular environment would. Defective cell membranes also allow movement of water molecules between
extracellular and intracellular spaces.

extract meaningful image-based quantitative parameters, depicted as para-
metric maps, which could be promoted to imaging biomarkers in case they
could provide us with structural and physiological information to character-
ize lymphomas and/or assess therapy efficacy with prognostic quality with
regard to the long-term clinical outcome [171]. Such parametric maps are
susceptible to motion artifacts occurring during image acquisition, resulting
in misregistration of the images obtained while changing the sensitivity of the
MR scanner to diffusion [3, 108]. Thus, retention of the spatial information
derived by a parametric map requires a step of motion correction prior to
its computation [95]. We are focusing on the calculation of the Apparent
Diffusion Coefficient (ADC) map, which quantifies the diffusion of water
molecules within tissue, and specifically, we are interested in examining its
potential to quantitatively characterize residual lymphoma masses.

1.4 Background on Diffusion-Weighted MRI

Imaging biomarkers are important tools for the detection, classification and
staging of cancers, as well as for the assessment of the patient’s response
to the provided therapy and the detection of tumor reoccurrence [171]. In
case of lymphoma patients, ['8F Jfluorodeoxyglucose (FDG)-positron emission
tomography (PET), has been established as the state-of-the-art biomarker
for response assessment at the end of treatment [89, 35], as well as an
early prognostic tool for predicting patient outcome in aggressive lymphomas
[68]. However, its main caveat, the risk of a false-positive diagnosis due
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Figure 1.5: Tissue characterization by diffusion-weighted images [95].

Three diffusion-weighted MR images in 55-year-old man with liver metastasis obtained at different b-values. The
patient large heterogeneous metastasis within right lobe of liver. Necrotic center of metastasis (squares) shows
attenuation of signal intensity with increasing b-values, indicating less restricted diffusion. By comparison, rim
of tumor (rectangles) is more cellular and shows little signal attenuation with increasing b-value.

to a non-specific inflammatory effect, sets in question its usefulness for
various lymphoma subtypes. Moreover, PET imaging is associated with a
non-negligible radiation dose, which is of particular concern for younger
patients, because of the risk of radiation-induced secondary malignancies.

Meanwhile, over the last years, DWI has been the subject of research with
promising results. DWI is a non-invasive functional imaging technique that
explores the extra-, intra-, transcellular and intracapillary motion of water
molecules in the body, as a result of their internal thermal energy [155].
In contrast to the case of a container outside the body, water movement
in biological tissues is not entirely random (Brownian), as it is modified
and limited by interactions with cell membranes and macromolecules, thus
it depends on the microenviroment of the diffusing water molecules. The
degree of this restriction is inversely correlated to the tissue cellularity and
the integrity of cell membranes (see Figurel.4). The sensitivity of the DWI
sequence to water diffusion is varied by changing a parameter called b-value,
which is proportional most of the times to the amplitude of the applied
diffusion-sensitizing (bipolar) gradients around the 180° refocusing pulse
(also known as the Stejskal-Tanner sequence [193]), but it can also change
due to an alternation on the duration or the time intervals between the
gradients.

DWI had initially been applied only to the evaluation of intracranial
diseases [246, 51], but the advent of fast imaging sequences like echo planar
imaging (EPI) and parallel imaging techniques allowed for faster acquisition of
DW images with less motion artifacts, revealing great potential in cancer and
bone marrow imaging of the body [110, 47], achieving some very promising
preliminary clinical results [145]. On top of that, the introduction of whole-
body diffusion-weighted imaging with background body signal suppression
(DWIBS) using free breathing and Short-tau inversion recovery (STIR), yielded
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high resolution 3D PET-like whole body images, that lead to immediate lo-
calization of metastases and primary tumors, like lymphomas [202], [214].
Because of their high cellularity and elevated nuclear-to-cytoplasm ratio,
lymphomas have relatively high signal intensity on DWI compared to normal
tissues. Thus, nodal and extra-nodal localizations of lymphoma show on DWI
higher signal intensity than normal tissues but also than other pathological
tissues like metastatic lymph nodes by carcinoma. The afore-mentioned
functional information about lymphomas is different than the one provided
by FDG-PET imaging, in which glucose metabolism is quantitatively reflected
[106].

Whole-body diffusion DWI using DWIBS is mostly evaluated qualitatively
by observing the relative attenuation of signal intensity on inverted-gray
images with at least two b-values; one with Os/mm?, that has a high signal-to-
noise ration (SNR) and gives a better estimation of the tissues’ morphology
and a second that depends on the type of lesion to be detected (for example
800-1000s/mm? is considered the proper range for detecting cellular solid
tumors showing relatively high signal intensity at that range) [95]. Tissues’
appearance changes as we move to higher b-values, i.e. the image becomes
darker, however this effect varies in different tissues, depending on the
their diffusivity (see an example in Figurel.5). In addition to qualitative
anatomical information, the ADC can be derived, which has been examined
for lesion characterization. The ADC reflects the gradient of water diffusivity
in the body. It is computed at each voxel and displayed as a parametric
map (ADC map). The word “apparent” is added because other factors than
random diffusion may influence the mobility of water (see Figurel.6). The
ADC is independent of magnetic field strength and can overcome the effects
of T2 shine-through (hyperintensity on high b-values caused by high pro-
ton density and not increased cellularity), thus allowing more meaningful
assessment of results.

1.5 Roadmap

The remainder of this thesis is organized into five chapters. In Chapter
2 a literature review on group-wise image registration for motion estima-
tion/correction in spatiotemporal (4D) medical images is provided. Chapter
3 covers the introduction of our deformable group-wise registration method
for motion correction. In that work, the deformable registration problem is
formulated using Markov Random Fields (MRF) and the deformation fields
were calculated such that an exponential model of diffusion could best ex-
plain the data. The problem is solved in an efficient one-shoot optimization.
Next, in Chapter 4 the previous method is extended and endowed with the
incorporation of the simultaneous, to the deformation fields, computation of
the ADC map, based on spatial smoothness constraints. The assumption
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Figure 1.6: Apparent diffusion coefficient (ADC) [95].

Left image: This simplified schematic shows derivation of ADC. Logarithm of relative signal intensity is plotted
on y-axis against values on x-axis. Slope of line fitted through plots is ADC. In this example, slope of line (ADC)
is smaller for tumor (gray line) than for normal liver (black line). Central and right image: Here we show a tumor
area with low ADC (gray outline, which is darker than normal liver with higher ADC values (black outline). One
can notice that contrast on ADC map is opposite of that seen on diffusion-weighted image. On diffusion-weighted
image, tumor showed less signal attenuation and appeared higher signal intensity than normal liver. Both those
two images are obtained from the same patient as in Figurel.5.

in that work is that the ADC values should not vary a lot within the same
tissue. So in contrast to any previous work, the ADC map is not computed
by voxel-wise curve fitting from the warped images, but by accounting for
dependencies between neighboring voxels. Furthermore, temporal consis-
tency (smooth transition over the deformation fields for increasing b-values)
is imposed by an additional term in the MRF formulation. Then in Chapter 5
the effect of image registration on the potential of diffusion-based parameters
to characterize lymphomas based on their types and level of malignancy
(disease’s stage), as well as assess or predict tumor’s resistance to therapy
(treatment response) is examined. The thesis is concluded in Chapter 6 with
a discussion over the work presented in this manuscript, while suggesting
different research directions for the future.
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Chapter 2

Group-wise Medical Image
Registration: A Literature Review

In the previous chapter, the problem of motion estimation in spatiotem-
poral (4D) medical images was introduced, while we argued on the neces-
sity to be tackled with group-wise image registration. Given an image set
I={lj|i=1,---,m}, the ultimate goal of group-wise image registration is to find
a set of transformations T = {7;|i = I,--- ,m} that would establish correspon-
dences between the anatomy at different time points. Such image sets are
mainly used in studies of volumetric dynamic imaging (DTI, DCE-MRI, DWI
etc.), or follow-up studies or longitudinal studies. The output of the image
registration method should be a set of registered images I = {I;ji=1,--- ,m}.
Specifically, image I; is wrapped to the common space, following the corre-
sponding deformation 7;. After all images have been aligned in the common
space, any quantitative analysis can be performed with a greater accuracy
than if no registration had taken place. Ideally, a homology between more
than two images is found simultaneously. Besides the afore-mentioned
applications, group-wise image registration is also applied to register the
anatomy of different subjects in case of inter-subject registration towards an
atlas construction or in case of a group study analysis.

Similarly to pair-wise registration, the objective function in group-wise
registration quantifies the level of alignment between the images, and it is
typically used to guide the optimization process of the transformation model.
Depending on the nature of information exploited in the matching process,
the methods are most of the times classified as geometric (methods that use
a sparse set of salient image locations to guide the registration, known as
landmarks), iconic (those that use voxel/pixel intensities to quantify similar-
ity), or hybrid methods (those that combine the afore-mentioned strategies
in an effort to get the best of both worlds). An alternative to the previous
approach was proposed by Shen and Davatzikos [182], in which attribute
vectors, i.e. a set of geometric moment invariants (GMIs) defined on each
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Figure 2.1: Examples of the different approaches in terms of the reference frame in 4D medical image
registration.

Upper-left imnage: An example of the eulerian approach followed by De Craene et al. [46] to register a sequence of
3D-US images of the same patient. In that way, the large transformations between remote images in the sequence
(denoted by a red arrow) are decomposed as a chain of small and smooth deformations. Upper-right image: An
example of a G2R lagrangian approach, in which all the 3D MR cardiac images of the sequence are registered
to a pre-selected one (the first image of the sequence in this example corresponding to the end-diastolic frame),
which acts as the reference frame [121]. Lower-left image: An example of a second G2R lagrangian approach in
which the reference frame to which all the MR brain images are co-registered is an atlas (generated template) [45].
Lower-right image: An example of an IRG group-wise registration with an unknown reference (consesus) space,
proposed by Wu et al. [233]. All subjects in the group are connected by the forward transformations g; (i.e., red
solid arrows) to the common space (i.e., a purple circled region), and the backward transformations (i.e., blue
dashed arrows) from the common space. The right panel shows how to transform between subjects §; and ;.

voxel in an image and calculated from tissue maps, were used to assess
image similarity. We follow this classification to make a structural separation
of the group-wise methods reviewed in this chapter.

In the same time the matching criterion indicates the reference frame
(geometry) to which each image is transformed. The decision on the reference
frame is very crucial in 4D medical image registration. The reference frame
is the coordinate system assumed to be the common space to which all the
images of the set should be co-registered. There is a variety of approaches
on this issue. We distinguish two basic approaches, the eulerian approach,
in which all deformations are described with respect to the neighboring time
point, and the lagragian approach, in which deformations are described
with respect to a chosen reference frame/image, also called template or
target image. The latter approach can be further discriminated into meth-
ods that select a specific reference image from the image sequence, those
that generate a template or atlas of anatomy through the use of population
statistics, to which all the images in the set are registered, and those that
regard the desired consensus space as unknown and instead they seek
for it with the aid of an objective, global (concerning all the images of the
sequence) function, based on which the optimal deformation for each image
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Figure 2.2: Illustration of the different approaches of spatiotemporal smoothness [138].

Leftimage: B-spline grid with spatiotemporal smoothness. Central image: cyclic B-spline grid with spatiotemporal
smoothness. Right image: B-spline grid with only spatial smoothness. All three schemes can be used in reference
time point, consecutive time point (eulerian) and groupwise registration approaches. In the cyclic version, the
grid points at the temporal border (open nodes) are direct neighbors.

is estimated. The Implicit Reference Group-wise registration will be for the
rest of the thesis denoted as IRG, while any of the first two sub-classes of
the lagrangian approach will be denoted as G2R, from Group-to-Reference.

The most common approach is the G2R, in which each time one image
is deformed to the reference frame based on an objective function like the
one of equation 1.2. The final solution is given by iterating over the number
of images. Thus, G2R registration consists of an approximation of a group-
wise scenario, being driven by pair-wise registration to attain a group-wise
registration. The downside of the G2R approach is that the result of the
registration depends on the choice of reference image. IRG registration on
the other hand is the correct implementation of a group-wise registration
method, being template-free and thus unbiased. Therefore most of the times,
an IRG registration, in which all images are co-aligned simultaneously, is
preferable.

An IRG registration needs a global (concerning more than two) objective
function, through which the optimal parameters of all the transformations
could be inferred simultaneously. There have been proposed various global
objective functions for an IRG registration, but one could distinguish two
general formulations characterizing this approach. In one case, the objective
function consists of a metric .# that has as an input all the parameters,
together with a regularization term % for each transformation:

argmin A (s1 0 T1(61),.-.,5m° T (6m)) + Y, R(T2(6))). (2.1)
01,....60, i=1

Then a second approach would be to use instead a pair-wise similarity metric
under a summation over all images:

m
argmin } | Y M (si0T;(6:),5;0T,(6;))+ Y R(T:(6))). (2.2)
O1,-,0m i=1 j,i<j i=1
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In Figure 2.1 we illustrate the differences between the afore-mentioned
approaches through images found in articles following the corresponding
approach. Finally, existing methods using a Lagrangian transformation
model either take or don’'t take into account the temporal smoothness of
the deformations, a constraint termed spatiotemporal smoothness (see also
Figure 2.2 for an illustration). There is a vast amount of applications of
group-wise registration techniques, following either the eulerian approach
or one of the lagriangian approaches, to perform various tasks in the field
of Medical Image Analysis. The vast majority of the proposed methods has
been applied on brain images to perform tasks such as the group analysis
of brain images of different anatomies towards either atlas-construction
[87, 19, 250, 153, 38, 176, 224, 50, 235, 85, 225, 232, 117] or assessing
diseases on the brain based on mono-modal registration [131, 210, 183, 196,
12, 132, 14, 69, 221, 40, 233, 86, 234, 43, 245, 178], as well as on multi-
modal registration [146, 191, 217]. Table 2.1 shows the basic characteristics
of these inter-subject group-wise registration methods. Moreover, automatic
brain segmentation based on brain atlases has been also examined by various
studies [10, 236, 82, 4], summarized over Table 2.2. Besides the brain,
other organs have been studied through group-wise registration, such as the
skeletal muscle calf [189], the heart in terms of cardiac motion [164, 227, 46,
198, 170] and automatic heart segmentation based on atlases of the heart
[121, 127], the lung again in terms of motion [92, 23, 165, 31], and automatic
segmentation [239] and the liver [243]. Moreover, motion correction has
been applied on quantitative MR images towards an accurate computation
of a parametric map of perfusion [21, 247, 230, 115, 71, 229, 125, 126, 41],
or water diffusion [81, 211, 67], or of the diffusion of a contrast agent in
colorectal cancer [20] and in breast cancer [237], and finally in Dynamic
Contrast-Enhanced MRI (DCE-MRI) [29, 138, 72]. Table 2.3 shows the basic
characteristics of group-wise registration methods applied on deformable
organs outside of the skull. Finally, in Table 2.4, the main approaches
towards IRG-based group-wise registration (discussed in the rest of this
chapter) are presented.

The aim of this chapter is to provide an overview of advances in group-wise
medical image registration, with a main emphasis on methods dealing with
motion estimation in 4D medical images, as the overall scope is to derive
useful conclusions that would aid us in optimally designing our approach
towards motion correction in DWI. Even if studies on inter-subject group-
wise registration towards atlas construction or group study analysis are not
of our primary interest, some classic papers on the field, that have greatly
influenced the advance of the ideas in group-wise image registration, are
still mentioned. In the same time, even if our primary interest is group-wise
registration, for the completeness of the presentation, references to pair-wise
methods are also included as many of the motion estimation methods are
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Table 2.1: Group-wise registration (inter — subject) methods for brain atlas construction or assessing diseases on
the brain

| Transformation Model | Objective Function | Reference Frame | Optimization |

Rigid | Affine G2R G2R IRG | Cont. | Discr.
(population) | (average)

‘ Method

Icon. Feat. Heurist.

(GMls)

Marsland et al. [131] v v v
Joshi et al. [87] v
Bhatia et al. [19] v
Cootes et al. [38] v v
Seghers et al. [176] v v v
Twining et al. [210] v v v
Shen and Davatzikos [183] v v v v
Studholme and Cardenas [196] v
Park et al. [153] v
Zollei et al. [250] v
Balci et al. [12]
Wang et al. [224]
Marsland et al. [132] v v v
Durrleman et al. [50] v
Baloch and Davatzikos [14]
Hamm et al. [69]

Wang et al. [221]

Wu et al. [235] v
Orchard and Mann [146] v
Jia et al. [85]
Wang et al. [225]
Cootes et al. [40] v v v v
Wu et al. [232]
Liao et al. [117] v
Wu et al. [233]
Jia et al. [86]

Wu et al. [234]
Spiclin et al. [191]
Wachinger and Navab [217] v
Crum et al. [43]
Ying et al. [245]
Shakeri et al. [178]

Deform. ‘ Geom.
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Table 2.2: Automatic organ segmentation based on group-wise registration (inter — subject or atlas — subject)

‘ Method ‘ Images ‘ Transformation Model ‘ Objective Function ‘ Reference Frame ‘ Optimization ‘
G2R G2R IRG | Cont. | Discr.
‘ populatlon] (average) ‘
Baillard et al. [10] 3D MR (brain) non-linear 1comc v
Lorenzo-Valdés et al. [121] 3D MR (cardiac) " v v
Wyatt and Noble [236] 3D MR (brain & cardiac) " v
Iglesias et al. [82] " v v
Alchatzidis et al. [4] v v
v

Shakeri et al. [177]

pairwise-driven; a template image is either selected or generated, which
drives the group-wise registration through a series of pair-wise registrations
between the template and each member of the image set. Moreover, the
vast majority of the methods mentioned in this chapter are dealing with
3D images (the space domain Q; of image I;(x), with x € Q; is R3), as for
medical imaging the mapping is usually 3D to 3D (most of the medical data
are acquired through tomographic techniques) and most of the examined
methods are designed to work on such datasets. However, algorithms built
for 2D image registration are still mentioned.
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Table 2.3: Group-wise registration (intra — subject) methods for a quantitative analysis of deformable organs

| Reference Frame

Method Images Study Transf. Model G2R G2R IRG Optimization
(sequence) (generated) ‘ ‘

Bidaut and Vallée [21] cardiac dynamic MRI perfusion rigid FPC continuous

Rao et al. [164] " cardiac motion non-linear end-diastolic "

Wierzbicki et al. [227] " " " —

Kaus et al. [92] 4D lung CT lung motion — "~ | end-inspiration —

Xiaohua et al. [237] DCE-MRI (breast cancer) breast segmentation A earliest image E—

Buonaccorsi et al. [29] DCE-MRI (WB cancer) parametric map rigid synthetic ref. —

Boldea et al. [23] 4D lung CT lung motion non-linear eulerian end-exhale ref. E—

Reinhardt et al. [165] " " " " "

Castillo et al. [31] " — ' continuous (nD+t)

De Craene et al. [46] 3D-US cardiac motion — eulerian "

Sundar et al. [198] 4D MRI " — v heuristic

Sotiras et al. [189] 2D MR skeletal muscle calf | compute mean image E— v discrete

Zhang et al. [247] MR brain perfusion perfusion rigid v continuous

Wollny et al. [230] myocardial perfusion MRI perfusion non-linear synthetic ref. "

Xue et al. [239] 4D lung CT lung segmentation " random image

Roche [166] fMRI correct of slice timing rigid mean image continuous (nD+t)

Metz et al. [138] DCE-MRI (WB) motion correction non-linear v "

Lietal. [115] myocardial perfusion MRI perfusion pseudo groundtruth continuous

Yigitsoy et al. [243] 4D CT/MRI (lung,liver) compute mean image v "

Hamrouni et al. [71] cardiac dynamic MRI perfusion affine FPC continuous

Bhushan et al. [20] DCE-MRI (colorectal cancer) parametric map non-linear v "

Wollny et al. [229] myocardial perfusion MRI perfusion " synthetic ref. e

Mahapatra [125] cardiac dynamic MRI " non-rigid v

Mahapatra [126] " " v/ | continuous (nD+t)

Cordero-Grande et al. [41] " non-linear v continuous

Huizinga et al. [81] qMRI parametric map v "

Hamy et al. [72] DCE-MRI (WB) motion correction mean image B —

Veeraraghavan et al. [211] DWI parametric map non-rigid b-value=250s/mm?* —

Guyader et al. [67] " " non-linear smallest b-value —

Royuela-del Val et al. [170] cardiac cine MRI cardiac motion " diastolic frame B —

Mahapatra et al. [127] cardiac dynamic MRI perfusion non-rigid Vo | T

In all the studies the nature of information in the objective function was iconic, except for Sundar et al. [198] that
used geometric moment invariant (GMI) features. Moreover, FCP stands for first-pass curve, gMRI for quantitative
MRI, whereas with (nD+t) we denote the study in which spatiotemporal regularization took place.

2.1 Geometric

Geometric approaches aim to recover image structure by registering the im-
ages to a common geometric space through the minimization of a matching
criterion that takes into account information on landmarks or meshes (point
sets with connectivity information). Various ways have been proposed to de-
tect points of interest, mostly in 2D images and less in the case of 3D images.
The images should contain sufficient details to facilitate point detection,
while the landmarks are assumed to be placed in salient image locations
which are considered to correspond to meaningful anatomical locations.
The underlying assumption is that saliency in the image level is equivalent
to anatomical regions of interest. We refer the interested reader to a book
by Goshtasby [63], where point-detectors and descriptors are extensively
studied. Once the landmarks or the meshes have been defined, the next
step would be the design of a strategy to achieve spatial correspondence
among the shapes found in the images.

Geometric methods can be classified into those that establish solely
the correspondences, those that infer only the spatial tranformations and
methods that infer both. In the the first class, the spatial correspondences
among the images are known a priori and the method needs to assign every
landmark from one image to another one in another image. Such a matching
could be either performed by descriptor distance [139] or by formulating the



2.1 Geometric 27

problem as graph matching [113, 220, 178]. These methods are useful when
they are used in combination with an interpolation-based transformation
model to estimate dense displacements between the two images. Hybrid
registration (see later in this section) is another case where such methods
are of interest, as one uses the sparse geometric correspondences along with
an iconic criterion to improve the estimation of the spatial transformation.
Regarding group-wise registration, a method of this class could be designed
or used following a G2R scenario.

The second class of methods concern those that infer the spatial trans-
formation that, when applied, will co-align the sets of landmarks. In case
correspondences are known, the popular Procrustes analysis for shape anal-
ysis might for example be applied [60, 39]. A drawback of Procrustes analysis
is the fact that it gives a solution that consists only of translating, rotating
and scaling. On the other hand, if the correspondences are not known, the
problem becomes more challenging, and the developed methods should be
robust to missing correspondences and outliers. In the same time, this is
the most common scenario in the various studies, therefore a significant
effort has been given to develop efficient solutions on this issue. Shapes can
be described by multiple unlabeled point-sets of unequal cardinality and
their distributions can be modelled by Gaussian mixture models (GMMs),
by assuming that features are independent and identically distributed [169].
In such a case, without knowing explicitly the point correspondences, non-
rigid registration can be achieved through the use of divergence measures
between probability distributions formed around point sets. Specifically,
the Jensen-Shannon (JS) divergence and the CDF-based Jensen-Shannon
divergence between the feature point-sets have been used as cost functions
to be minimized in order to obtain the non-rigid deformation. Wang et al.
[224] followed such a strategy to tackle the problem of the simultaneous
IRG registration of multiple point sets. Given m probability distributions
P,(6;), where the parameter of the transformation 6 in this case being a set
of points {6; € R? i € {1,...,m}}, d being the dimensionality of the image, the
JS divergence of P;(6;) is defined by:

M(Pi (1), ..., Pu(0n)) = H(Y  mP(6;)) = Y mH(P(6))), (2.3)

where 7 = {n,...,m,|m > 0,Y. m; = 1} are the weights of the probability distri-
butions P,(6;) and H(P;(6;)) is the Shannon entropy. The drawback of this
approach was that the problem could not be solved in closed-form. Instead,
a computationally and memory demanding estimation based on the law of
large numbers was required. In subsequent works, Wang et al. alleviated
this shortcoming by trying both the generalized L,-divergence [222], as well
as a new divergence measure called the Jensen-Renyi [221], which is a gen-
eralization of the Jensen-Shannon divergence being based on Renyi Entropy
[73], both of which allow for a closed-form solution with an IRG approach.
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The Jensen-Renyi global metric is defined as:

M(Pi(61), ..., Pu(6n)) = Ho (Y mP:(6;)) — Y miHo (P(6;)), (2.4)

where Hy(P,(6;)) is the Renyi entropy. In the case of the generalized L,-
divergence, the global metric becomes:

/l(Pl(Gl), Ce ,Pm(em)) = i 717,‘L2(Pj(9i),P(91, ceey Om)), [25)
i=1

where P(-) is the convex combination of the m probability densities, P(6y,...,6,,)
Y m;P;(6;). In both works, feature points corresponding to identifiable land-
marks on heart wall boundaries were automatically extracted and tracked
[200]. Any of the three afore-mentioned divergence metrics used as a global
objective function for an IRG geometric registration is closer in formulation
to equation 2.2. The thin-plate spline (TPS) was chosen to represent a regu-
larized deformation towards a non-rigid group-wise registration. TPS has
been also used to induce smooth deformations among cardiac 3D CT and
MR images [227]. However, TPS are well-known to have some shortcomings,
such as that the transformation from one image domain to another is not
inverse consistent. Regarding the optimization scheme used to find the
optimal transformation parameters in the approaches followed by Wang et
al., the gradient of each divergence criterion with respect to the transforma-
tion parameters was estimated each time in order a gradient-based method
(quasi-Newton) to be used.

Another way to perform non-rigid registration of shapes and points with-
out caring to establish correspondences is by using signed distance functions
to adopt a representation of the geometric information. In this case, the
geometric primitives (e.g., landmarks or shapes) are assigned to zero dis-
tance, while the rest of the image elements are assigned a signed value based
on their euclidean distance from the geometric primitives. Based on this
representation, the optimal transformation can be estimated by performing
standard intensity-based registration. Huang et al. [80] embedded shapes
to the higher dimensional space defined by the signed distance transform
and used Mutual Information as the matching criterion to align them, per-
forming a G2R 2D registration. On the other hand, the correspondences
and the transformation can be simultaneously estimated through the use of
iterative schemes, where one component is estimated, and then the other
component is refined based on this estimation. Maybe the most well-known
method with this characteristic is the iterative closest point (ICP) method
proposed by Besl and McKay [18], that estimates correspondences between
pairs of points in the source and target shapes based on proximity. However,
ICP optimization might get stuck in local minima due to wrongly assumed
correspondences. Several methods trying to increase the robustness and ac-
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curacy of the algorithm for free form deformation (see corresponding section
in [188]). Any of these pair-wise methods could be incorporated in a G2R
group-wise approach.

A very different geometric registration approach has been followed by
researchers of the group of Imaging Science and Biomedical Engineering in
the University of Manchester, mostly to cope with large population variation,
i.e. they were designed mainly for inter-subject registration towards the
creation of statistical deformable models, like anatomical atlases of organs.
Such atlases can be used in medical image interpretation, where image
registration can help in tasks as diverse as anatomical atlas matching and
labeling, image classification, and data fusion. To this end, statistical de-
formable models of shape and appearance, the "Active Shape Model" and
the "Active Appearance Model" were created, [209, 44, 40], with the objective
function derived from the Minimum Description Length (MDL) coding ap-
proach [132]. The formulation of the global function in this case is based on
the total description length. Actual description lengths are computed using
the fundamental result of Shannon [181], which states that if there are a set
of possible, discrete events {A} with associated encoding-model probabilities
{P(A)}, then the optimum code length required to transmit the occurrence
of event A is given by:

My = —1nPy nats, (2.6)

where nats is the analogous unit to the bit, but using a base of ¢ rather than
base 2. The total (global) description length (.#,,.;) is related to transmitting
a discrepancy As between each image and the atlas, defined on the reference
space, a discrepancy calculated according to the image histogram [209]. The
authors used the clamped-plate spline (CPS), and an efficient spline based
on the piece-wise linear interpolation of movements across a tessellated set of
knotpoints in either 2D or 3D, in order to achieve non-rigid transformations.
A simple gradient descent-based optimisation scheme for the nodes was
used — points are moved singly to estimate the gradient direction for the
objective function, but moved all at once using a line search.

Geometric approaches have been also followed in studies for motion
correction in 4DMI, such as the study of morphological changes towards
disease or pathology prediction through computing the distance between
pairs of different motion trajectories (G2R approach) [200]. Furthermore,
lung motion has been studied through the use of geometric group-wise
registration, by recovering landmarks’ trajectory [31] via compressible flow
[79], as well as tracking the motion trajectories of junction structures and
using the sum of normalized cross-correlation with subtracting means as
the objective function, measured between each image in the sequence and
a reference frame. [238]. A G2R lagrangian approach was also followed in
both these works, where the maximum (end) exhale frame and the maximal
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Figure 2.3: Illustration of the stack of images used as an input to the the "empirical" entropy, which is
the objective function in the congealing approach [112].

A pixel stack is a collection of pixels drawn from the same location in each of a set of N images. Here, the i/ pixel
from each of six images forms a pixel stack. Since half of the pixels are black and half are white, this corresponds
to a Bernoulli random variable with parameter p = 0.5. The entropy of such a random variable is 1 bit.

inhale phase were chosen as reference frames respectively.

2.2 Iconic

Iconic methods, often referred to as either voxel-based or intensity-based
methods, quantify the alignment of the images by evaluating an intensity-
based criterion over the whole image domain. Devising an appropriate
criterion is an important and difficult task. The criterion should be able
to account for the different physical principles behind the acquisition of
the images and thus for the intensity relation among them. Moreover, the
properties of the similarity function (e.g., its convexity) may influence the
difficulty of the inference and thus the quality of the obtained result. Espe-
cially for IRG registration, the definition of a global similarity cost is a very
challenging task since on one hand, such a metric should be scalable and
effective and on the other hand, global similarity metrics don’t expand easily
from pair-wise intensity-based metrics. The vast majority of group-wise med-
ical image registration methods are using an intensity-based criterion, with
the ones derived by information theory being the most popular ones, such
as mutual information (MI) [226, 215, 37, 124] and its normalized version
(NMI]) [197]. A thorough survey on mutual-information-based registration of
medical images can be found in [160].

One of the first IRG intensity-based registration methods was the
congealing framework introduced by Miller et al. [140]. Congealing is a
nonparametric technique for factoring, or separating, a set of images into
sets of approximately independent “ingredients” or causes. It had been
initially efficiently applied to binary digit recognition [112], a problem in
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which there is shape variability within and between classes, and in general
when variability occurs mostly in brightness or color or when any other form
of structured but continuous variation of a parameter occurs. Congealing
achieves its goal by reducing the variability in a set of images or other vectors,
via minimizing the quantity

K
E=Y) H(%), 2.7)
i=1

the sum of the pixel(or voxel)-stack so-called "empirical" entropies, by trans-
forming a set of images of a class (K being the total number of pixels/voxels
in the image). For the simplest case of a set of binary (black and white)
images, H is defined as:

N N N N
A(%) = (2 logy ~— + ~— log, —

where Ny and N; are the number of occurrences of O (black) and 1 (white)
in the binary-valued pixel stack (N denotes the total number of images in
the set, see figure 2.3). In the end, the optimal set of transformations ap-
plied on the image set is the one that minimizes equation 2.7. The first
to adapt the congealing framework to a population of grayscale-valued 3D
brain images of different patients towards population atlas creation and
without introducing any bias (IRG approach) were Zoéllei et al. [250], who
proposed an approximation of the total sum of voxel-wise entropies, with
randomly selected locations in the data coordinate space being selected for
evalauation. The transformation model was an affine one and an iterated
stochastic gradient-based update mechanism (similar to that of [226]), that
made the group-wise registration computationally efficient, was designed
in a multi-resolution framework. Balci et al. [13] extended this method by
including free-form deformations to the deformable registration of a group
of brain images. An IRG registration was proposed by Wachinger and Navab
[217], who performed simultaneous registration by accumulating pairwise
estimates (APE) for the similarity estimation. The authors showed a strict
mathematical deduction of APE from a maximume-likelihood framework and
established a connection to the congealing framework. This is only possible
after an extension of the congealing framework with neighborhood informa-
tion. Moreover, efficient gradient-based optimization strategies for APE were
developed. All these methods for simultaneous registration are not designed
for motion estimation, and consequently, do not take temporal information
into account. Bystrov et al. [30] tried to address both aspects, temporal
smoothness and reference image selection, but the method is limited to local
motion trajectories, whereas [243] proposed an IRG registration, with the
same objective function as in [217], but which can cope with large deforma-
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tions, while it imposes spatiotemporal smoothness on the deformations.

Another popular IRG registration framework was first introduced by
Bhatia et al. [19], who proposed the NMI as the similarity criterion for com-
paring N images. Due to the fact that such a comparison would require
an N-dimensional histogram, which for a large numbers of images would
become computationally infeasible, one arbitary image is chosen to act as
an intensity, but not as an anatomical, reference. All pairs of intensities,
comprising the voxel intensity in the reference and the corresponding inten-
sity in each image, are added to the same joint histogram. Prior to Bhatia
et al. method, Studholme et al. [195, 196] had proposed an IRG registra-
tion that simultaneously aligns the group of images to a common space
using high-dimensional non-rigid registration. A metric of local measure
of self-information (entropy-based) of the observed set of intensities at a
given location is used to drive the local deformation. The cost function is
optimized with the aim of maximizing the similarity between images, while
penalizing displacement from the average shape. The drawback of that work
was the fact that a weighting parameter to specify the influence of the penalty
term needed to be chosen explicitly, which biases how well the constraint
is satisfied. Bhatia et al. [19] alleviated that limitation by constraining the
definition of the reference frame, without though giving primacy to any image.
This was achieved by requiring that the sum of the displacement fields add
to zero:

N
Y Tu(x)=0. (2.9)
n=1

The objective function is solved using Rosen’s Gradient Projection Method
[123], which is comparable to the method of steepest descent for uncon-
strained optimization. The afore-mentioned constraint inspired [138] to
incorporate into their IRG registration method the following constraint on
the deformation fields:

1 N
¥ X ) = 2.10)

which denotes that the average deformation should be restricted to be the
identity transformation. The authors opted to cope with motion correction
on dynamic medical imaging data. To this scope, the authors employed a
lagrangian nD +t B-spline transformation model in which both spatial and
temporal smoothness are taken into account. The similarit metric used min-
imized the intensity variances over time, while a constrained optimization
using stochastic gradient descent method with adaptive step size estimation
was incorporated in their framework. The same constraint as in [138] on the
transformations was also imposed by Cordero-Grande et al. [41] to simul-
taneously co-align a sequence of perfusion cardiac 3D MR images, while a
new sparsity-promoting metric was proposed. A gradient descent procedure
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was used here too to find the optimal solution to their objective function.

The last three afore-mentioned IRG approaches had focused on the small
deformation setting, in which arithmetic averaging of displacement fields is
well defined. Joshi et al. [87] developed a unbiased group-wise registration
method to be used in the large deformation diffeomorphic setting. The au-
thors induced a symmetric metric on the space of diffeomorphisms by using
a Sobolev norm via a partial differential operator L on the velocity field v, as
a similarity metric. Besides this metric, their objective function included a
regularization term on the velocity to meet the criteria for diffeomorphism.
The optimization was based on the Euler-Lagrange equations derived by
[120]. A similar IRG method to the one of Joshi et al. was later presented by
Geng et al. [55], who used a similar objective function with the difference
lying on how the transformation is parameterized and how the transforma-
tions were regularized. Geng et al. used a Fourier series to parameterize the
transformations, while a linear elastic model was used in the place of the
regularization term, in order to achieve the derivation of small deformations.
The authors argue that, though large deformation registration approach
provides more degrees of freedom for registration than a small deformation
model, it increases the complexity and computational requirements, which
may not be necessary in order to answer a particular scientific question.
In any case, the choice of using a small or large deformation model should
depend on the application.

In general the problem of large deformation registration mainly concerns
researchers working on inter-subject registrations, i.e. towards anatomical
atlases creation. In such works, a similarity metric that has been proposed
is the length of the geodesic path that connects "similar" images of the
population, defined as a weighted sum of the intensity difference and the
smoothness measure of the velocity field. The geodesics are commonly com-
puted on the manifold of diffeomorphic transformations [9, 87], an approach
that is though computationally expensive and which might induce geodesics
that do not represent valid anatomies. Hamm et al. [69] on the other hand,
compute the geodesics on the manifold of the observed anatomical variations
from the data through a learning scheme, which turned to give a better visu-
alization of the data structure and allowed the authors to choose an optimal
template among the samples. Learning the manifold of the observed anatomy
might be a useful approach towards motion correction in longitudinal or
follow-up studies in 4DMI.

Another IRG registration method, applicable on multi-modal registration
was proposed by Orchard and Mann [146]. More specifically, the authors
opted to register simultaneously images acquired from different sources.
Their method is based on clustering in the joint intensity scatter plot (JISP).
The density distribution of the scatter points in JISP is estimated first and
then images are deformed in such a way so that the dispersion of the scat-
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ter plot is minimized. Density estimation of the clusters is modeled as a
Gaussian mixture model (GMM), and is established iteratively using an
estimation-maximization (EM) method. Moreover, a Newton-type optimiza-
tion scheme was used. A drawback of that work was that only rigid and
linear transformations were considered, which limits its application mainly
to brain images. By incorporating a deformable model, such a metric could
be potentially applied on spatiotemporal 4D images, when their intensity
profile varies through time due to the physiological/chemical process evolv-
ing during image acquisition. Another IRG registration method applied on
a group of images from different modalities was proposed by Spiclin et al.
[191] too. In that work, correspondences across the images are modeled by
the gradient-based joint density function (JDF) of the co-occurring image
intensities, which explains the statistical dependence among the image in-
tensities. More specifically, the so-called tree-code registration method is
proposed for registering a group of multimodal images that estimates the
JDF through an efficient hierarchical subdivision of the joint intensity space
(JIS). Although registration based on the minimization of joint entropy had
already been proposed, they follow a hierarchical intensity-space subdivision
scheme to efficiently approximate the high-dimensional JDF and the joint
entropy by the Parzen kernel method, as well as they use the Hilbert kernel
that captures all important features of the JDF, avoiding thus the need to
tune the kernel bandwidth parameters. Non-linear registration was attained
using TPS.

Very recently, a task-specific IRG approach has been presented. In a study
for quantitatively and automatically assessing the response to chemoradio-
therapy for patients with colorectal cancer, Bhushan et al. [20] exploited
that intensity changes in dynamic contrast-enhanced MRI (DCE-MRI) are
expected to behave according to a low-dimensional pharmacokinetic (PK)
model (Tofts pharmacokinetic model [207]). Therefore they designed their
objective function based on this model, under the assumption that the set
of the observed images is obtained when the original image, derived by the
PK model, is deformed (due to patient-motion) and then subjected to some
noise process, modeled with a Gaussian distribution. The similarity criterion
in the end was an sum squared error over the image domain between the
transformed with the inverse transformation observed image and the original
image defined by the PK model. Without knowing though the model’s physi-
ological parameters of interest at each voxel, they designed a joint PK model
fitting and estimation of the deformation field within a Bayesian setting, by
maximizing the joint posterior probability P of the deformation # applied to
each dynamic time frame, and the PK parameters ® that best explain the
observed data:

[0, 4] = argmax P(®,u|X,,Y, ), (2.11)
O,u
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where X, denotes the image before contrast agent injection, Y denotes the
image formation model, and ¢ is a noise parameter. Equation 2.11 was
solved by computing the derivatives of the second part of the equation
with respect to ® and u, in a Gauss-Newton optimization framework. The
afore-mentioned the diffeomorphic deformation framework based on the
LogDemons approach [212] was followed to deform the images, where the
transformation that needs to be applied to each image is parametrized by
a stationary velocity field instead of a displacement field. That work was
actually an advanced version of the original rigid registration approach with
an embedded PK model [29] to a deformable registration, in order to accom-
modate localized intensity differences due to contrast agent uptake.

Furthermore, Zheng et al. [248], examining a G2R registration method to
co-align DCE-MRI sequences, argued too against the use of a classic intensity-
based similary metric, like the sum squared distance (SSD), since due to the
temporal intensity changes in DEC-MR data, the shrinking/expanding prob-
lem of tumor can inevitably happen [203]. Instead the authors propose any
robust estimation function [70], while they chose the Lorentzian estimator
for their method:

p(r) =log(1+(1/0)*/2), (2.12)

where o is a scale parameter to control the function’s shape. SSD might be
an appropriate metric for mono-modal registration, however in case of DCE-
MR, it assigns a high "weight" to the outlying measurements corresponding
to the temporal intensity changes. Deformations are driven more by the
unreliable intensity differences, leading to the shrinking/expanding problem
in registration. In contrast, the Lorentzian function is more forgiving about
the outlying measurements, reducing the driving force from the temporal
intensity changes.

Another task-specific IRG registration method has been proposed for
studies dealing with registration of brain perfusion images. More specifically,
for a perfusion study, the voxel-wise intensity profile over time is modeled as
a function of time f{r) and spatial correspondence among images acquired
on instances different can be found through measuring the smoothness of
that function. Subsequently its smoothness can be measured by the total
quadratic variation [’ (f(r))?dt, assuming f{¢) is continuously differentiable.
That concept was proposed by Zhang et al. [247], who approximated the total
quadratic variation as E =Y | YX [1(F,(x)) — L, (T (xi)))?, where ' =n—1 or
n' =N for n = 1. The Levenberg-Marquardt method was used for optimization.
A limitation of that work was the fact that, since it was designed for brain
perfusion images, only affine transformations were allowed. Later Mahapatra
et al. extended that initial work to an non-rigid IRG registration framework
on their studies on 4D cardiac perfusion images [128, 125, 127]. Besides
the increase in the number of degrees of freedom for the transformation
model, the authors proposed also a different objective function, in which
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both the first and second derivatives are used for the entire image sequence.

On the other hand, an eulerian approach was followed by De Craene et al.
[46] to register spatiotemporal 3D ultrasound (3D-US) images. The authors
used a deformable model, referred to as Large Diffeomorphic Free Form
Deformation (LDFFD), to recover longitudinal strain curves from healthy and
Left-Bundle Branch Block (LBBB) subjects. In LDFFD, a set of Free-Form
Deformations (FFD), each one capturing the motion between consecutive
image frames, is jointly optimized to obtain the consistent temporal trans-
formation that maximizes the joint alignment of all images in the sequence.
This strategy ensures that the transformation at each time step is coherent
with the transformation of previous temporal phases, and consequently
increases the robustness of the alignment procedure. The authors argue
that by decomposing the transformation as a chain of smooth deformations
with a small magnitude, the invertibility of each transformation is ensured,
provided that the temporal resolution of the input image sequence is satis-
factory. In term of the similarity criterion, the image metric gradient was
estimated between consecutive images. Such a metric requires the computa-
tion of the derivative of the displacement field at spatial samples of the fixed
image domain with respect to all transformation parameters, here defined
as parametric Jacobian. This computation of the parametric Jacobian is
a key component of their algorithm since it introduces a coupling between
the different time steps and enables the optimization of all transformation
parameters simultaneously. This coupling raises from the fact that acting
on the transformation parameters at a given time step modifies the transfor-
mation of the evaluated point at all subsequent instants. A version of the
quasi-Newton BFGS optimizer [180] that uses less memory (L-BFGS) was
used for optimizing their objective function.

All the afore-mentioned iconic registration methods use the raw images
to calculate the similarities among the different instances of the image se-
quence. However, particularly for motion estimation in volumetric dynamic
imaging, an alternative approach has been proposed and it is based on sep-
arating motion from contrast enhancement before registration. Melbourne
at al. introduced an algorithm named progressive principal component
registration (PPCR) that gradually removes misalignments [136, 137]. The
method is based on the iterative use of principal component analysis (PCA)
combined with a standard registration algorithm such as multi-resolution
FFD [142]. In PCA, contrast changes are assumed to appear in the more
significant principal components and motion in the less significant. This was
used to create a synthetic motion-free set of target images using a limited
number of principal components that correspond to contrast enhancement
(G2R approach). Then a similar approach using robust principal component
analysis (RPCA) this time was proposed by Hamy et al. [72] to cope with
motion correction due to respiration in Dynamic Constrast Enhanced (DCE-)
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MRI. Their hypothesis is that RPCA coupled with a registration algorithm
based on residual complexity minimization [144] provides more accurate
registration of DCE time series. A possible flaw of these two afore-mentioned
ideas is the fact that there is no guarantee that the local changes caused
by contrast enhancement can be correctly identified in the more signifi-
cant principal components in the presence of motion. For example, a small
translation at one of the time points might not be identified through the
correlation or the covariance matrix (the approach should be more valid in
case of small local deformations).

PCA was also used for data decomposition recently for the development
of a non-rigid IRG registration method by Huizinga et al. [81].The goal of
their method was to compensate for motion in spatiotemporal 4D MRI, also
referred to as quantitative MRI in their paper. A correlation matrix of the
datapoints in the model is defined and subsequently, dimensionality reduc-
tion is applied on the dataset, based on this correlation matrix. Then a
dissimilarity measure is proposed based on the idea that when motion is
present in the images, the data no longer adheres to the presumed acquisi-
tion model and the eigenvalue spectrum of the correlation matrix changes.
No regularization on the transformation was accounted for, while minimiza-
tion of the similarity metric was achieved with gradient-based optimizers.
Their method proved to be superior to a similar IRG registration approach
based on MI only on one of the three datasets examined, maybe mainly due
to the fact that the proposed dissimilarity metric is based on the selection of
a optimal number of eigenvalues capturing the highest percentage of data
variance, which is use-defined and thus highly subjective.

Close to the concept of applying dimensionality reduction on the raw data,
Milles et al. [141] used Independent Component Analysis (ICA) to compensate
rigid heart motion in perfusion scans. More recently, Wollny et al. [229]
investigated the use of ICA to decompose data prior to registration in free
breathing cardiac MRI. In this case too, the objective is to remove motion
elements to form a synthetic target time-series. The method performed
better than the one published by the same author earlier, that was based
on exploiting the quasiperiodicity in motion correction of free-breathing
myocardial perfusion MRI [230]. Still the performance of the method in [229]
heavily depends on the ability of ICA algorithm to create synthetic reference
images that are related to motion, in order to be used in the registration
framework as templates, as well as the fact that it is a supervised method.

What all the afore-mentioned methods have in common is the fact that
they used continuous, gradient-based optimization to reach the global mini-
mum of their objective function. Sotiras et al. [189] approached the problem
of group-wise registration with a discrete formulation, that enables different
deformation models and matching criteria to be used in a straightforward
manner. The deformation fields were modeled by cubic Hermite splines,
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Table 2.4: Group-wise methods following an IRG approach

Objective ‘ Characteristic ‘ Studies ‘

Congealing (minimize sum of voxel-wise entropies) iconic,continuous Miller et al. [140], [250], [112], [243], [217]
Penalize displacement with a weight from the average shape " Studholme and Cardenas [196]
Penalize displacement from the average shape Bhatia et al. [19],[12]
Average deformation be restricted to identity transformation Metz et al. [138], [41]
Large diffeomorphic deformations Joshi et al. [87]

Small deformations through a linear elastic model Geng et al. [55]
Increase gradient-based JDF (multi-modal registration) Spiclin et al. [191]
Dispersion of JISP be minimized (multi-modal registration) Orchard and Mann [146]
Intensity profile smooth (1* derivative) over time Zhang et al. [247]
Intensity profile smooth (1 and 2" derivative) over time Mahapatra [125], [126], [127]
Decrease fitting to a model error Bhushan et al. [20]
Decreases distance to presumed acquisition model (PCA) Huizinga et al. [81]

Global statistical compactness with locally smooth deformations iconic,discrete Sotiras et al. [189]
Decrease Minimum Description Length (MDL) geometric,continuous Twining et al. [209]
Decrease JS divergence " Wang et al. [224], [221]

Matching forward and inverse transformations GMIs,heuristic Sundar et al. [198],[233],[234]

while they used Markov Random Fields (MRF) to model the dependencies
among the the deformation fields and the observations (images), reflected
on an MRF-based energy formulation, which consisted of their objective
function and had an entropy estimator based on spacings [25] as its simi-
larity criterion. Their objective function was solved by an an efficient linear
programming method [101]. Moreover, by imposing hard constraints to the
allowed deformations [172], the diffeomorphic property was addressed in
their method. Alchatzidis et al. [4] proposed a multi-atlas segmentation
using graph-based deformable registration. An adaptive co-registration and
segmentation of brain tumors where the sampling resolution of the label
space is adapted according to the image content is proposed in [152].

2.3 Hybrid

Hybrid methods opt to take advantage of the useful features of both iconic
and geometric approaches, while deminishing the limitations that both have
by not relying completely on any of these approaches. In recent years, hy-
brid landmark- and intensity-based registration (LBR and IBR respectively)
has been proposed to register lung images [244]. A multiresolution frame-
work was designed. On each level, LBR is first performed. The resulting
transformation is then used as the starting point to guide IBR in which the
transformation is refined based on matching the intensity patterns of the
images (sum of squared local tissue volume difference). The authors followed
a lagrangian G2R approach.

2.4 Methods based on Attribute Vectors

Another popular approach to image matching is through the use of attribute
vectors (Geometric Moment Invariants) [182]. Considering that the accuracy
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and robustness of correspondence detection depends on how effectively the
image descriptor can capture the local and global properties of the given
point, it is desirable that these descriptors are scale and rotation invari-
ant. In some organs, such as the heart, that don’t have many geometrically
discernible points, most local descriptors, such as intensity and gradient
information, fail to capture the uniqueness of a given voxel. A morphological
signature is thus attributed to each point, the attribute vector, for the pur-
pose of minimizing the ambiguity in image matching and correspondence
detection during the deformable registration procedure. The motivation is
that a rich enough attribute vector will be able to differentiate between voxels
that would be considered the same based only on their intensity informa-
tion. Thus, fewer local minima will be present and better accuracy may be
achieved. To further reduce the effect of the local minima, they proposed a
hierarchical scheme that approximates successively the objective function
through the use of an increasing number of voxels where the matching is
evaluated.

Sundar et al. [198] extended the initial work of Shen et al. to IRG reg-
istration for cardian motion estimation. A vector of geometric attributes
was attached to each point on a surface model of the anatomical structure.
Each attribute vector reflected the geometric properties of the underlying
structure from a local scale (e.g., curvature), to a global scale and matching
reflected spatial relationships among distant surface points. Their objective
function included two image attribute similarity terms, one defined on the
forward transformation measuring the similarity of attribute vectors between
each point in the sequence, and a similar second similarity term defined
the inverse transformation to ensure correct matching between points in
different sequences. Moreover, temporal consistency and spatial smoothness
were enforced by two additional constraints on the objective function. A
continuous optimization scheme that doesn’t require the calculation of any
derivative is employed to solve for the optimal parameters of the deformation
model [65]. Another group-wise registration based on attribute vectors was
also proposed by Wu et al. [235] towards brain atlas construction, but their
approach is characterized as G2R as the a subject image closest to the
mean of the initial affine registered images is selected as the reference one
(exemplar).

2.5 Discussion

In this chapter, an overview of the group-wise image registration methods
designed for and applied on medical images over the last twenty years was
given. The previous analysis can act as a roadmap to guide our efforts
towards proposing computational efficient and versatile group-wise registra-
tion algorithms for motion correction in quantitative MRI. Let us first discuss
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how our goals influence our choices regarding the deformation model, the
objective function and the optimization strategy. All three choices have an
impact upon the qualities of the resulting registration algorithm.

Efficiency depends on the following aspects: the number of deformation
parameters, the computational cost on the evaluation of the objective func-
tion and the convergence properties of the optimization strategy. Apparently
the fewer considered parameters, the lesser the computational burden to
infer them would be. The complexity of the objective function relates directly
to the computational performance of the algorithm. Complex functions re-
quiring computationally expensive calculations will slow down the response.
A fast converging optimization strategy is required to restrict the number of
cost evaluations.

Versatility is also conditioned upon the number of deformation parame-
ters, the nature of the objective function and the variety of energy forms the
optimizer can handle. The number of degrees of freedom is a bound for the
expressive power of the deformation model and it has a direct impact upon
the deformations that may be recovered and thus restricts the problems
the registration algorithm can treat successfully. Different problems call
for different objective functions to account for the relation between different
intensity distributions. A universally applicable objective function does not
exist. The optimization method is constrained by the nature of the objective
function it can handle. The ideal optimizer should be able to deal with a
variety of objective functions.

Having described the desirable characteristics our group-wise registration
method should possess, we identify a number of issues we have to take into
account while designing such a method.

Rigid versus non-rigid transformation models: As mentioned in chapter 1,
for most organs besides the brain deformable image registration becomes
necessary. However, rigid registration intra-subject can be applied prior to
deformable registration to compensate for subject’'s movement inside the
scanner during image acquisition. As far as the deformation model is con-
cerned, we favor interpolation based models. By controlling directly the
parameterization of the deformation model, we can choose the minimum
number of degrees of freedom that is needed to recover the deformations
of the problem at hand. Thus, we can achieve the best compromise be-
tween computational efficiency and versatility. In addition, the local spatial
influence of the deformation parameters allows for the design of efficient
approximative schemes for the cost calculations. Finally, hard constraints
in grid-based models ensure the diffeomorphicity of the deformation, a key
property that we desire our algorithm to exhibit.

Diffeomorphic property: Since our objective is to correct for patient motion
during a single scan, it would be natural to assume that there should be
no change in topology when we apply the deformations. In other words,
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assume that each image in a set should contain the same structures, and
hence there should be a unique and invertible one-to-one correspondence
between all points on each pair of images; we would expect all deformations
to be invertible and smooth. This suggests that the correct representation
of warps is one that will not "tear" or fold the images. For these reasons, we
have chosen to use the diffeomorphic deformation framework.

Regarding the reference frame: G2R approaches through the selection of
a statistical atlas are more popular on brain studies where spatial correspon-
dences can be interpreted, i.e. one could known whether a mapping denotes
a specific organ or tissue or an abnormality. However, in 4DMI where the
main purpose of registration is to correct for motion, an IRG approach should
be preferable over a G2R, as it is unbiased though challenging in terms of
computational cost. For example, Geng et al. [55] compared these two ap-
proaches and showed that the IRG technique, with the small deformation
elastic model, provides better transformations compared to reference-based
methods in terms of smaller within-group variance after registration.

Regarding the nature of information: Geometric registration is robust with
respect to the initial conditions and the existence of large deformations. The
solution of the registration problem is obtained in a relatively straightforward
way once landmarks have been extracted. However, locating reliable land-
marks is an open problem and an active topic of research. Most importantly,
the sparse set of directly obtained correspondences gives rise to the need for
extrapolation. Interpolation then results in a decrease in accuracy as the
distance from the landmarks increases. The interest regarding geometric
methods has decreased during the past decade. Those limitations hinder
apparently the development of hybrid methods too. Nevertheless, geometric
methods constitute a reliable approach for specific applications. On the other
hand, iconic approach has the potential to better quantify and represent the
accuracy of the estimated dense deformation field. Nonetheless, it comes
at the cost of increased computational expense. Where geometric methods
use a small subset of image voxels to evaluate the matching criterion, iconic
methods may use them all. Moreover, due to the fact that salient points are
not explicitly taken into account by the matching criterion, the important
information they contain is not fully exploited to drive the registration. In
addition, initial conditions greatly influence the quality of the obtained result
due to the non-convexity of the problem. Nevertheless, iconic group-wise
registration methods have become very popular as the computational power
has been increased over the years. Moreover, sometimes it is definitely an
advantage to use all the relevant signal intensity information intrinsically
available in the images. The main benefits of direct intensity-based metrics
are their easy implementation, the computational efficiency, and the satisfac-
tory results in intra-subject, intra-modality registration. Finally, registration
method based on attribute vectors use a heuristic optimization scheme, with
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no guarantees on the convergence to a global optimum, restricting thus their
use.

Continuous versus discrete methods: As far as the optimization strategy
is concerned, we opt for discrete optimization methods. Discrete methods
have several advantages when compared with continuous approaches for
image registration. First, discrete algorithms are inherently gradient-free,
while most part of continuous methods require the objective function to be
differentiable. Gradient-free methods do not require computation of the en-
ergy derivative. Therefore, it may be applied to any complex energy function
(allowing the user to define its own similarity measures in case of registration
problems). In other words, they are modular with respect to the objective
criterion enlarging the range of applications, the registration algorithm can
cope with. The only requirement is that this function must be evaluated in a
variety of possible discrete labelings. Second, continuous methods are quite
often prone to be stuck in local minima when the functions are not convex.
In case of discrete methods, even complicated functions could potentially be
optimized using large neighbor search methods exhibiting good convergence
rates. The main limitation of discrete approaches is the discretization of the
continuous space. Discrete optimization methods are limited with respect
to the structures they can optimize. Being able to cope only with discrete
structures, they may lack precision. Nonetheless, smart sampling of the
solution space may alleviate this precision issue while and in addition boost
their efficiency. Last but not least, parallel architectures can be used to
perform non-sequential tasks required by several discrete algorithms (such
as message calculation in LBP) leading to more efficient implementations. By
using a discrete label space we can explicitly control its range and resolution,
while in continuous models it is not clear how this type of information can
be used to constraint the solution.



Chapter 3

Deformable Group-wise
Registration Using a
Physiological Model: Application
to Diffusion-Weighted MRI

In the end of the previous chapter we drew the generic lines regarding our
choices with respect to the deformation model and the optimization scheme.
However the question of an appropriate objective function, as well as the
optimal strategy in terms of defining a reference frame is still open.

The previous study enables us to draw a few conclusions. First of all,
regarding the objective function, in cases where the intensity profile of the
tissue on the image changes in time, as in DWI, information theoretic metrics
might fail as they lack spatial context and their estimation is problematic.
Because of that, the consideration of local anatomical structures could be
helpful, such as the employment of geometric features to retain structural
details throughout the course of registration, i.e., 3D moment invariants,
encapsulated in the form of attribute vectors, to describe the anatomical
structure in the vicinity [235]. However, in DWI the intensity range in images
acquired by a high b-value (b-value > 100s/mm?) is significantly reduced, as
one can notice in Figure 3.1. Thus geometric features are difficult to be
extracted accurately on those raw images. On the other hand, knowing the
physics behind the image acquisition process, one could exploit the fact that
intensity changes are expected to behave according to a low-dimensional
acquisition model. Finally, local evaluations of similarity measures are ad-
vantageous as they render the optimization more robust to local intensity
changes provoked by imaging artifacts.

Furthermore, regarding the reference frame, an explicit choice of a spe-
cific image (preferably the first image in the sequence) to use it as a template
should be a valid strategy for certain applications, such as the case of motion
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correction in dynamic MRI. This latter assumption is motivated by the fact
that the images in such an image sequence are acquired sequentially, in a
short period of time, from the same patient. Therefore, we wouldn’t expect
them to differ drastically in terms of the underlying anatomic structure
(we expect local, non-linear rather than global, linear transformations to
have been occurred). Using one of the images in the sequence as a tem-
plate reduces the dimensionality of the feature space in which the objective
function and the optimization are computed. In the same time though, a
computationally efficient group-wise registration scheme without the need of
choosing a reference image would be even more appropriate, as it avoids the
undesired introduction of bias with respect to the a priori chosen template,
though being challenging.

Based on the above conclusions, our first remark urges us to believe that
the matching criterion should be based only on a model that best describes
the physics of the image acquisition protocol. Embedding such a model into
dynamic image registration directly results in corrected parameters of inter-
est. Moreover, we are interested in examining the potentiality of designing
a group-wise registration scheme without the need of choosing a reference
template while being computationally efficient. We therefore propose an
unbiased template-free IRG registration method, in which all the images in
the sequence are deformed and registered into an unknown consensus space.
We aim at finding the optimal deformation fields of the diffusion-weighted
magnetic resonance (DW) images using a temporal constraint, related to
the diffusion process, as well as a smoothness penalty on the deformations.
These entities are modeled subsequently by Markov Random Fields (MRF)
and solved by an efficient discrete optimization technique. The latent vari-
ables of the model are m-deformations (B-spline polynomials) of the images,
which are obtained using the discrete formulation introduced in [57]. The
deformation variables are connected with the observations towards ensuring
meaningful temporal correspondence among the DW images. They are also
inter-connected in order to decrease the cost of comparisons between individ-
ual images. This latter inter-connection is due to a high-order dependency
among the images, relative to the physiological process taking place during
image acquisition. Our work was inspired by the approach of [189]. The
main difference between the two approaches is found in the encoding of the
global similarity of the population. A statistical compactness criterion has
been used in [189], whereas we incorporate within the registration process
a physiological model representing the temporal intensity change. This in-
tensity modeling step removes the ambiguity during the search of anatomic
correspondences and thus increases the mapping accuracy.

In the remainder of this chapter, we present our first group-wise registra-
tion method that destines for motion compensation in DWI. Our method is
modular and could be also used in other 4D MRI sequences, by incorporating
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a different global similarity metric, which can be straight-forward. In the
first section of this chapter, a review on the existing registration methods on
4D MRI is presented. Then in section 3.2, we are presenting the proposed
deformable group-wise image registration method, designed to be used for
registering dynamic images in 4D MRI. More specifically, we are going to
discuss how to formulate the registration problem as energy minimization by
considering discrete deformation elements and show that we can optimize
the previous energy in a discrete optimization setting. In 3.3 the experimen-
tal validation is presented. Finally, in section 3.4, a discussion concludes
the chapter.

3.1 Prior Work

There is a great amount of work on this specific problem, with most of the
published methods been mentioned in the previous chapter already. How-
ever, we would like in the section to summarize their main differences and
limitations. One of the first approaches was the work of Bidaut and Vallée
[21], who used the end-exhale image of a sequence of myocardial perfusion
MRI as a reference image to which all the rest were registered, however
the fact that rigid transformation was assumed to model the complex mo-
tion of the heart is a significant limitation of that early work. Rigid-body
tranformation was assumed also by [247] to correct for motion in brain
perfusion MR images. On the other hand, Huizinga et al. [81] proposed a
groupwise non-rigid registration method, which could be applied for motion
compensation in various time-resolved MRI datasets. They exploited that
intensity changes are expected to behave according to a low-dimensional
acquisition model, which they claim is typically the case in time-resolved
MRI. By assuming every time a specific acquisition model that could predict
the intensity variation in time for the specific dataset, their method was
applied to modified Look-Locker inversion recovery (MOLLI) T 1 mapping in
an infarcted porcine myocardium, black-blood variable flip-angle (VFA) T 1
mapping in the carotid artery region, and ADC mapping in the abdomen.
In each case, a correlation matrix of the datapoints in the model is defined
and subsequently, dimensionality reduction (through PCA) is applied on
the dataset, based on this correlation matrix. Then a dissimilarity mea-
sure is proposed based on the idea that when motion is present in the
images, the data no longer adheres to the presumed acquisition model and
the eigenvalue spectrum of the correlation matrix changes. Regarding the
deformation field they used a B-spline transformation model that could
account for the non-rigid deformations. However, their method proved to be
superior to a similar group-wise registration approach based on MI only on
one of the three datasets (MOLLI), maybe mainly due to the fact that the
proposed dissimilarity metric is based on the selection of a optimal number
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of eigenvalues capturing the highest percentage of data variance, which is
use-defined and thus highly subjective.

Hamy et al. [72] also used PCA for motion correction, but they used PCA
in another way, in order to obtain the low-rank data components, whereas
they used a residual complexity measure for registration. The iterative use of
PCA combined with a standard registration algorithm was first introduced by
Melbourne et al.[136, 137]. The concept is that in PCA, contrast changes are
assumed to appear in the more significant principal components and motion
in the less significant. However, the ability of PCA to disentangle motion from
contrast enhancement depends on the nature of motion, e.g. the periodic
motion of free breathing can appear in the more significant principal com-
ponents along with contrast changes. Milles et al. [141] used Independent
Component Analysis (ICA) to compensate rigid heart motion in perfusion
scans. More recently, Wollny et al. [229] investigated the use of independent
component analysis to decompose data prior to registration in free breathing
cardiac MRI. In this case too, the objective is to remove motion elements to
form a synthetic target time-series. The method performed better than the
one published by the same author earlier, that was based on exploiting the
quasiperiodicity in motion correction of free-breathing myocardial perfusion
MRI [230]. Still the performance of the method in [229] heavily depends
on the ability of ICA algorithm to create synthetic reference images that
are related to motion, in order to be used in the registration framework as
templates, as well as the fact that it is a supervised method.

In the same line, several pieces of work address this intensity variation
problem by using an enhancement-driven synthetic sequence to specify the
target image for all the frames. In Buonaccorsi et al. [29] and Adluru et al.
[1] the intensity-time curve at each pixel is fitted to a dynamic contrast-
enhanced MRI model [206]. Accordingly, the observed sequence is rigidly
registered to the resultant synthetic series which is assumed to be free of mo-
tion. These model-based registration methods have the limitations that the
fitting is complex and an input function of the contrast agent concentration
in the arterial supply is required. Stegmann and Larsson [192] proposed
to register perfusion sequence by using Cluster-aware Active Appearance
Model which is built from an annotated training set. Towards defining a
more appropriate target image for group-wise registration in myocardial
perfusion MRI, Li et al. [115] estimate a pseudo ground truth of the image
sequence. Their goal was to compute a reference sequence that would have
been acquired without being affected by motion or noise during acquisition.
To this end, they use segmentation information to impose spatiotenporal
smoothness on the ground truth image. The main limitation though of their
method lies on the iterative optimization scheme, that increased computa-
tional complexity. Thus, on one hand introducing the pseudo ground truth
overcomes the intensity variation problem, on the other hand though, the
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energy functional of non-rigid registration is not minimized in one attempt,
but in an iterative coarse-to-fine manner. Spatiotemporal smoothness was
also taken into account by Metz et al. [138] in their proposed group-wise
registration method. The authors consider a Lagrangian nD +t B-spline
transformation model. The similarity metric used minimized the intensity
variances over time and constrained optimization using stochastic gradient
descent method with adaptive step size estimation was incorporated in their
framework. Regarding the constraints on the deformations, the popular zero
average displacement constraint was taken into account [19, 12].

The most popular metric for registering images with different intensity
distribution is probably the Normalized Mutual information (NMI) [124, 173].
Hamrouni et al. [71] proposed an efficient, unsupervised group-wise reg-
istration method for cardiac perfusion MRI (p-MRI) exams based on novel
kNN-estimators of Shannon information measures between high-dimensional
first-pass curve (FPC) distributions. However, they assumed an affine mo-
tion in their experiments, while cardio-thoracic motions are more complex.
The use of a non-rigid deformation model is more appropriate and that
would increase the demand on computational efficiency. Zheng et al. [248]
developed a new method based on FFD in order to register breast images.
In this approach a Lorentzian estimator is used as a similarity measure,
combined with a reformulation of the energy function minimization using
linear programming. An interesting new sparsity-promoting metric for group-
wise elastic registration in cardiac perfusion MRI was recently proposed
by Cordero-Grande et al. [41], which according to the authors it can be
understood as a compromise between a pairwise sequential registration and
a pure group-wise registration (i.e., one in which the order of the metric
samples is not considered in the metric design).

In terms of of calculating specifically an ADC map without motion arti-
facts, thus working on a DWI data set, two group-wise registration methods
have been proposed in [67] and [211]. However, the registration process in
the former is based on pair-wise connections between the images, whereas in
the latter one the proposed group-wise registration requires prior structure
segmentation, making it a not fully-automated framework. Furthermore,
both methods use mutual information criterion for image similarity, without
taking into account the intrinsic intensity changes in DW-MRI due to the
diffusion process. Finally, in both these studies, group-wise image registra-
tion and ADC parameter estimation were treated as two separate problems.

To conclude this literature review, it is worth mentioning that in all the
afore-mentioned studies, the group-wise approach yielded always better
results than the pair-wise one, whenever such a comparison was made.
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3.2 Proposed Method

Let us consider m images {s1,..,s,,}, Where each image is described by intensity
values s;(x), with x € Q;, Q; being the domain of image s; (R3). We are look-
ing for a set of transformations 7 = {7 : xg = T;(x;), i = {1,...,m}} which map
mutually corresponding points from the m-image spaces to the same point
of a reference frame Qg. This mapping aims to correct deformations due to
anatomical differences or motion, in order to identify intensity differences
in time due to change in the measured quantity. The reference pose would
then correspond to the consensus geometrical space, in which the ADC map
resides.

As mentioned in the discussion part of the second chapter, we opt for
an interpolation-based transformation model and a discrete optimization
strategy. In the same time, we want to incorporate into the registration
framework a physiological model that describes the change of the measured
physiological quantity in time. In this section, we introduce in the energy
formulation the deformation and the physiological model and decompose
the continuous problem in discrete entities.

3.2.1 Physiological Model

We assume that the intensity values of the images depend mainly on the
amount of signal loss occured during the application of the two equal rectan-
gular gradients before and after the 180°-refocusing pulse [15]. The relation
between the signal attenuation expressed by the signal intensity § and the
diffusion of the water molecules in a microscopic level is well known to be ex-
ponential [111]. Having acquired the images with high b-values (> 50s/mm?),
we can assume that our diffusion-weighted data are insensitive to vascular
capillary perfusion and diffusion is the only type of motion present, thus
the ADC is equal to the water diffusion [95]. Therefore the relation between
ADC and the signal intensity at each voxel location can be modeled as:

§i(x) _ e—b,'~ADC(x) (3.1)

where b; is the b value used for the acquisition of image §;. In case of m
b-values images, the ADC can be calculated as the slope of a line fitted on
the plot of the logarithm of the relative signal intensities of the tissue against
the b-values. The ADC would then be:

apc) = Zi b>< i) =500 5.9

where y; = Ins; and b, 7 the mean b-value and mean of Ins respectively.
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3.2.2 Deformation Graph-based Model

We used the popular Free Form Deformations transformation model, de-
scribed in subsection 1.2.3 of the first chapter, to parametrize each trans-
formation 7' (x) by a linear combination of K control points, weighted using
cubic B-splines. In the end, we have m uniformly distributed grids of control
points over the image domain (one corresponding to each 3D image).

3.2.3 Temporal Global Comparison

The first term of the objective criterion to be minimized is the global term
that relates to the exponential fitting error of the physiological model. We
introduce the following global measurement towards group-wise registration
in DWI:

Eaaa T+ o) = [[[ ploi(T ) (T (0)) 3.3)

with p being the metric used to assess a global cost for any displacement
that causes an increase on the exponential fitting error of the physiological
model, among the images in the sequence. The key idea behind the proposed
dissimilarity measure is that, when motion is present in the images, the
data no longer adheres to the presumed afore-described physiological model.
Therefore, the intensity values of the deforming images at corresponding
coordinate locations are expected to fit better on the physiological model
than the corresponding values of the unregistered sequence. In that way, we
impose consistency on the computation of the physiological model. It should
be expected that as the images are jointly aligned, the derived optimal
pose would express more accurately the diffusion process, enabling the
computation of more accurate ADC maps. More specifically, we propose
the sum of squared errors of prediction (SSE) for the global measurement
towards global registration in DW images. In that case the metric p would
be:

N

g(sla"'vsm>:Z(si_§i)2 (3.4)
i=1

where §; is calculated by equation 3.1 for the current estimate (fitted values)
ADC. Such an objective function introduces the inverse transformation, that
is challenging from theoretical and practical point of view when referring
to deformable deformation. An alternative criterion that can be considered
is using the forward transformations and measuring the similarity of the
images on the intersection of the deformed images, or

Egara(Th,- -, T, / /QIU o O(T1(x), -, Tn(xm)) (3.5)
p(si(Ti(x1)), = s sm(Tm(xm)))dxr, -« - dxm
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where ¢ is a Dirac-driven function whose role is to define which voxel cor-
responds to the same position at the reference pose defined as follows:

[Ti,j € [1,m] < [1,m] Sq(Jxi —x;)-

3.2.4 Deformation Smoothness Constraints

Medical images capture properties of spatially continuous anatomical struc-
tures, therefore it is natural to assume that the deformation applied to them
should be locally smooth. Opposite to the former cases, this constraint
should applied to each grid separately. This constraint can be defined on
the grid as

Eumoorn(Th - 1 T) = i JiA V() (3.6)

where y is a convex function imposing smoothness.

The optimal parameters of the deformation should be determined through
the minimization of an objective function being composed of the above terms.
The complete term associated with the registration problem is then defined
as the sum of the data and smoothness term, or

Erorar = Edqata + Esmooth- (3.7)

Recovering the deformation parameters is challenging due to the high
dimensional parameter space and the non-convexity of Erprar. The most
common way to obtain the transformation parameters is through the use
of a gradient-descent method in an iterative approach. Given an initial
guess, one then updates the estimate according to the following formula
[Ti=T""1— St%] . However such a process doesn’'t guarantee the recovery of
the global minimum and it is computational inefficient. Moreover, it involves
the derivative of the similarity metric with respect to the transformation
parameters and therefore it is model and matching criterion dependent.
Graphical models and the off-the-shelf discrete optimization methods being
associated to them can address the above mentioned constraints.

3.2.5 Objective Function: MRF-based Energy Formulation

In order to be able to use discrete optimization schemes, the deformation
space should be quantized. Let ® =d',---,d9 be a quantized version of a
plausible deformation field, then a discrete set of labels & =1,---,l, can be

corresponded to it. A label assignment l‘g, where £ € 1,--- ,¢, to a grid node p

is associated with displacing the node by the corresponding vector d%. If a
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label is assigned to every node we get a discrete labeling /. The displacement
field associated with a certain labeling [ becomes D(x) =} ¢ npd'r.

By applying this quantization of the deformation space one would like to
reformulate the problem as a discrete multi-labeling problem. A common
model for representing such problems are Graphical Models and MRFs. For
every control point in the deformation grid superimposed onto image s;,
there is a node p; that represents its displacement (p; € 7", with 7" denoting
the set of all nodes that encode the latent variables). In the context of
group-wise registration for motion correction in DWI, the graphical model
will involve two types of dependencies. The first one relates to the fitting
error of the physiological model and is applicable only on cliques connecting
nodes on different grids (high-order, inter-image dependency). This global
cost is the most challenging case, due to the fact that in order to be properly
determined it requires higher order cliques. The adoption of higher order
cliques is possible within MRFs, however their use decreases significantly
their computational efficiency. For this reason, we consider an approximation
of the global cost described later. We avoid the use of high-order cliques
and instead convert the high-order term to singleton and pair-wise cliques.
Finally, the second type of dependencies relates to the smoothness constraint
and is applicable only on edges connecting nodes on the same grid (pair-wise,
intra-image dependency) (see Figure3.2).

The main challenge of discrete optimization methods is the quantization
of the search space since it seeks for a compromise between computational
complexity and the ability to capture a good minimum. This can be achieved
through a compositional approach, where the final solution is obtained
through successive optimization problems with respect to the deformation
increment towards minimizing the objective function (Glocker et al. [57]).
Thus, by keeping the set of the labels in a reasonable size it becomes possible
to approximate the optimal solution in an efficient way.

Energy terms: The constructed graph is associated with an energy,
consisting of three terms, a global unary term and two pairwise terms:

m
Eyrr(Ti 0 Gy, -+, Tno Gi) = Agiopal Z Z Vi(lp)
i=1peG;

+)~inter Z Z Z qu(lp7lq> (38)

i=1 pEGiqe(N(p)\Gj)

+ Aintra Z Z Z qu(lp’ ZCI)

i=1peGiqe(N(p)NG)

where V,(-) are the unary potentials,V,,(-,-) are the pair-wise potentials and N
represents the connectivities of the nodes (see a representation of the edges
in figure 3.1). Three different constants, Appar.Ainrer and Aiyq are used to
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reference Space

dl dm-l dm

Figure 3.1: Representation of the edges of our proposed MRF-based group-wise registration scheme.

The node and the edge system of all the connected graphs. With brown color we represent the relationship
within the grid nodes belonging to each of the deformation fields (intra connections). Finally, the pink edges
denote the temporal relationship (which can be either of high-order or a pair-wise connection) between successive
deformation fields (inter relationship).

weight the three different types of potentials. The optimal values of the afore-
mentioned weights were empirically determined in a brute force approach.
The optimization of such an energy is non-convex, however the optimizer we
used provides guarantees for an almost optimal solution to such an NP-hard
MREF problem [101].

Global Unary Term: We approximate a global cost for the deformations
by assuming that for each node p of a given deformation field/image s;, the
rest of the images do not get deformed within the current iteration. This
assumption is considered for all nodes and for all deformation fields within
a given iteration, an assumption that is common in minimizing graphical
models through expansion moves. In this case, the cost of a deformation
depends only on the label of this node:

Vlii(lpi) %/'”/QIU”'UQm Wp, (x:) (3.9)
g(Sl (Tlt_l(xl))f" 7Si(Ti[(xi))7”' 7Sm(Tr£z_l(xm)))

where @(-) is the support function that determines the contribution of the
point x on image i to the unary potential of the control point p of the corre-
sponding grid i. By g(-) we define the metric used to assess a global cost for
each possible displacement / of a control point.

As mentioned earlier, the objective criterion we propose to be minimized
for the case of DWI registration, is the sum squared exponential regression
fitting error among the images in the sequence, in order to impose consis-
tency on the computation of the physiological model. It should be expected
that as the images are jointly aligned, the derived optimal pose would express
more accurately the diffusion process, enabling the computation of more
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accurate ADC maps. In that case the metric g would be:

(st ysm) =Y (si—§) (3.10)
i=1

where §; is calculated by equation 3.1 for the current estimate (fitted values)
ADC.

Inter-image Pair-wise Term: We consider a second term related to the
observations, meaning the intensities of the images, that aims to reduce the
outlier effect. To this end, local pair-wise comparisons between members of
the population are examined too. We assume that two images (for example
images i and j) are allowed to be deformed, while the rest m —2 remain static
within the current iteration. The SSE criterion is used to calculate the cost
of a deformation, as expressed by the following pair-wise term:

VPin(lPHZQj)%/'”/Q UUe Wp, (i)
U-UQn

(s (T (1)) = fOe)) >+ 4 (T () — f () (3.11)
+ (55(TFH ) = F )Y+ 4 (i Ty () — f (6m))]
dxy---dxidx;---dxpy

The inter-image pair-wise comparisons are performed only between the
immediate neighbors in the temporal domain.

Deformation Smoothness Constraints: In order to impose local smooth-
ness to the deformation fields, we used the same smoothness constraint
used in [189], which is performed by penalizing the magnitude of displace-
ment vector differences. This constraint was applied to neighboring nodes
that belong to the same deformation field assuming a 26-nodes intra-image
connectivity.

3.2.6 Optimization and implementation details

Once the objective function is defined, the optimal solution can be obtained
by performing inference via Maximum a posteriori (MAP) estimation, which
in a discrete MRF model it is equivalent to minimizing the MRF energy, as
the afore-mentioned ones. The solution will be a set of optimal deformations
di, - ,d, defined as:

A A

di, - ,dy =arg min Epygr (3.12)

1,7 8m
Discrete optimization of MRFs is, in general, an NP-hard problem [185].
However, in special cases, it can benefit from very efficient solutions. The
trivial brute force algorithm (i.e. trying all possible combination of labels
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for each and every variable) has an exponential complexity that makes such
an approach unsuitable. More efficient algorithms have been developed
during the last two decades which boosted the use of graphical models in the
field of computer vision [91]. In our work, we used an algorithm of discrete
optimization, that has is based on principles from linear programming and
primal dual strategies, while at the same time generalizes a-expansion
(FastPD, [101]). FastPD can be classified as both a max-flow and move-
making algorithm, as well as an message passing method. The former class
of discrete optimization algorithms make use of the well know max-flow
min-cut [26] algorithm from graph theory, which can optimally solve some
instances of discrete energies. These methods are usually combined with
greedy strategies that iteratively minimize over the label space by solving a
sequence of max-flow min-cut sub problems. On the other hand, in message
passing methods, messages are calculated and propagated between nodes in
a graph. This propagation can be seen as a re-parametrization of the original
problem aiming to establish special properties in the re-weighted function
that makes inference easier. One of the main advantages of FastPD is its
modularity/scalability, since it deals with a much wider class of problems
than a-expansion, being an order of magnitude faster while providing the
same optimality guarantees when performing metric labeling [100].

FastPD solves a serie of max-flow min-cut problems on a graph. In
that sense, it is similar to a-expansion which also performs MAP inference
on multi-label problems by solving successive binary max-flow min-cut
problems. The main difference between these approaches is the construction
of the graph where max-flow min-cut algorithm is applied. «a-expansion
constructs the binary problem by restricting the label space, so that the only
options for a given variable are to remain in its current assignment, or to
take a label a (which varies in every iteration). Instead, FastPD constructs
these binary problems by performing a Linear Programming Relaxation (LPR)
of the integer program that represents the discrete MRF formulation. It
builds upon principles drawn from the duality theory of linear programming,
applying the well known primal-dual schema to the relaxed version of the
MRF integer programming formulation.

For the sake of clarity, let us explicitly show how we can cast a standard
MAP inference problem on a pairwise MRF as an integer program [98]. We
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define the following integer program:

min ﬁunaryi Z Z Vunary(lp)yp(lp) +

i=1 peG;leZ

Binterz Z Z Z Vinter(lpalq)lpq(lpalq) + (3.13)

i=1peGige(N(p)\Gi) leZ

Bua Y Y Y Y Viralpslg) gl y)

i=1 peG;ge(N(p)NG;) €&

s.t.
Y A(p) =1 Vp € G (3.14)
le&

Y. Apg(lp,ly) = Ag(ly) Vi, e £ NpeGnrge (N(p)\Gi) (3.15)

l,eZL
Y Apg(lply) = A1) VI, e ZNpeGAqge (N(p)\G) (3.16)

lL,e&
Z Xpg(Lpy1g) = Ay(1y) Vije £ NpeGAqge (N(p)NG;) (3.17)

l,e&
Y Apglp.lg) =Ap(l,) VI, € L¥peGAge (N(p)NG) (3.18)

l,€Z
Ap(-); Apg(-,-) €0,1 (3.19)

In this formulation A4,(-) and 4,,(:,-) are indicators for the discrete labels
I, assigned to each node p, used to linearize the MRF energy. A binary
variable 4,(/,) is equal to 1 when node p chooses label /,. The same holds
for the pairwise case A,,(-,-). Equation 3.14 guarantees that every variable
is labeled with only one label at a time, while equations 3.15 to 3.18 keep
consistency between variables A,(-) and A,(-). This integer formulation is still
an NP-hard problem, given the integrality constraint expressed in equation
3.19. Therefore, this integer program becomes a standard linear program
when this constraint is relaxed, by allowing variables 4,(-) and A,,(-,-) to take
continuous positive values.

The aforementioned linear program task is used by FastPD as the primal
problem, while the dual of the resulting LP is used as the FastPD dual prob-
lem. Then, the primal-dual schema is iteratively applied. At every iteration,
a max-flow min-cut problem is solved, improving both primal optimality
and dual feasibility. FastPD provides good balance between efficiency and
accuracy and that’s the reason it was chosen as the optimization scheme for
optimizing the afore-described energy.

Our algorithm follows a coarse-to-fine process that first estimates pa-
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Figure 3.2: DW images of a patient from the dataset.
An axial slice of the 3D image of a patient, with b values of 50, 400 and 800 s/mm? (from left to right). The red
contour in the b-value=50 image corresponds to the tumor’s contour, as it was drawn by the expert.

rameters at a coarse spatial image resolution level and then updates the
solution to a finer resolution level. We applied a multi-resolution scheme
with 3 resolutions levels; two levels in which the joint problem is solved and
one at full image resolution in which only the appearance model is optimized,
keeping the previously obtained deformation fields fixed. The rationale be-
hind this multi-resolution approach is that we want to adopt the grid size to
the information content (frequencies) of the modeled variables, i.e. a sparse
grid for the deformation model to cope with potential rigid transformations,
a mid-level grid for local deformation and global intensity variations and a
last dense grid for local intensity changes. Finally, regarding the run-time
performance of the method, all the experiments were computed on a 8-cores
machine (3.6 GHz processing power) with a memory requirement of 4 GB.

3.3 Experimental Validation

In order to validate the proposed registration method, we used a data set
provided by the Centre Hospitalier Universitaire Henri-Mondor, France. The
data set consisted of 3D images of twenty-five (25) different patients with
lymphoma, scanned with a 3 Tesla MRI scanner using 3 b values: 50,400
and 800 (s/mm?). Therefore, the sequence of the images to be registered was
always of size 3 (m = 3) per patient (see figure 3.1 as an example of such a
sequence belonging to one patient). Both male and female patients were
included. The image size was 130x106x22 for every patient, with a pixel
resolution of 2.46x2.46 mm? in the axial plane and 5 mm? in the z-axis. Each
image had been manually annotated by experts to indicate the contour of
the tumor.

We compared the proposed method against two other modelling criteria:
the sum of absolute intensity differences (SAD), which is appropriate when
the intensity values of the deforming images come from the same distribution
(under the presence of noise), and an entropy-based criterion, applicable
in multimodal image registration. These two criteria were implemented
in Eq.(3.9) and Eq.(3.11). Specifically, for the latter criterion, the entropy



3.3 Experimental Validation 57

estimator based on spacings [25] was used in Eq.(3.9), whereas mutual
information (MI) was used in the inter-images comparisons (Eq.(3.11)).

Mean of SSE Mean of MI §X 10 Mean of NCC
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Figure 3.3: Results on three different criteria for validating each method, applied on DW images.

First row: Boxplots of statistics (mean) of SSE by fitting the physiological model, MI and NCC respectively. Second
row: ADC map (same axial slice as in figure 3.1) derived without registration and with the examined registration
methods.

The performance of the seven registration approaches was quantita-
tively assessed by examining three different validation criteria: the fitting to
the diffusion model error, meaning the sum squared error (SSE) between the
fitted, by the diffusion model (see Eq.1) and the real data, the MI and the
normalised cross-correlation (NCC), averaged across pairs of the population.
The mean SSE is computed as: SSE e = ﬁxxam(ét(x) —s¢(x))?, in case of

unregistered images and SSE;cqn = @Zxam(ét(x) —st(x) oDy(x))? in case of the

registration methods, where §¢(x) the fitted value. The standard deviation
of SSE is computed as: SSE;; = |£2—|er|g|((§t(x) —5¢(X)) — SSEqean)?, in case
of unregistered images and SSE, .., = ﬁ Yiclo)| ((8¢(x) —st(x) o Dg(x)) — SSEean )?
in case of the registration methods. The proposed method outperfomed
the two other registration implementations in all three validation criteria,
irrespectively of the similarity criterion used within the other frameworks.
This result can be justified by the fact that the other methods do not use
the right data term that models the temporal intensity change; thus a sub-
optimal solution is reached. Moreover, in order to qualitatively evaluate the
results, the ADC map is shown for the same axial view of the patient used in
figure 3.2, as derived by the three registration scenarios, as well as without
registration (common in clinical practice). It can be seen that the ADC map
calculated after registering the DW-MR images with our proposed method
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reveals anatomical structure and highlights the spatial tissue heterogene-
ity. Part of our current work includes the simulation of diffusion-weighted
images, which will allow us to better validate and compare the different
approaches.

3.4 Discussion

In this paper, we propose a novel deformable group-wise registration method
that derives an optimal representation for shape and intensity change to-
wards more accurately estimating the underlying pathology. Experimental
results on DW images demonstrate that the derived by this approach ADC
map preserves structure, as it can be seen inside the big cyst superior
to the tumor shown in Figure3.8, and reveals tissues boundaries (tissue
heterogeneity, anatomical structure). Moreover, based on the quantitative
results presented in the previous section, one can conclude that the the best
performing methods are actually those that use the fitting to the diffusion
model criterion in their formulation. A limitation of the proposed method
is that it doesn’t examine simultaneously the interaction among all the
deformation fields of the population towards a global consistency on the
physiological model. Such a global term would require the adaptation of high
order inter-image cliques. Therefore, a group-wise registration method that
includes high-order dependencies among the images would be a promising
research direction for future work.



Chapter 4

Joint Deformable Registration
and Diffusion Estimation

In the previous algorithm, we didn’t impose any spatial constraint on the
computation of the parametric map. It should be expected though that
the values of the measured parameter do not vary a lot within the same
tissue. The physiological model presented in the previous chapter doesn’t
guarantee within tissue spatial smoothness. When noise is present in the
image sequence, not only registration might not be able to cope with it, it
might be even affected by that source of noise and result in a sub-optimal
local deformation on the relevant anatomic region. The elimination of such
outliers on a parametric map is crucial due to the fact that they might bias
any statistical analysis performed on ROIs on the map, based on which
tissues/tumors could be characterized.

As in the case of segmentation and registration, the problems of group-
wise registration and quantized parameter estimation in time-evolved image
sequences, such as in quantified MRI, are traditionally approached individ-
ually. However, the accuracy of one is of great importance in influencing
the success of the other. In order to accurately quantify the physiological
process during image acquisition, we propose and present in this chapter a
joint deformable registration and appearance model computation framework,
that simultaneously registers the spatiotemporal images and models the
spatiotemporal physiological process. The key idea behind a simultaneous
parameter estimation is that registration and physiological parameter es-
timation can naturally benefit a great deal from each other. We define a
deformation and an appearance model: the deformation model maps each
one of the m spatiotemporal images in a common space (the quantitative
parameter’s space), whereas the appearance model describes the signal in-
tensity related to the quantitative parameter, which in the current paradigm
is the diffusion of water molecules that takes place during DWI acquisition.
The unknown variables of the combined deformation and appearance model
correspond to a m+ 1-layer graphical model, m layers that represent the
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m 3D deformation fields, one for each DW image, and an extra layer for
the parameter of the appearance model, namely the 3D ADC map. The
latent deformation variables are obtained using the discrete formulation
introduced in [57]. The layers are interconnected in order to achieve consis-
tency between the predicted diffusion (by the appearance model) and the
diffusion calculated by the registered DW images. Each deformation field
depends thus on the appearance model. Spatial smoothness constraints on
the parameters of the appearance model and the deformations are imposed
through pairwise interactions. Moreover, the m layers deformation fields
have pairwise interconnections (based on proximity of b-values) towards
imposing smoothness on the change of deformation through time (the images
sequence is acquired with increasing b-values).

Our approach is very close to the work of Bhushan et al. [20] on jointly
estimating the pharmacokinetic parameter and co-aligning DCE-MR images,
with the main difference being the fact that no spatial smoothness was
imposed in that work (the prior distributions on deformation and pharma-
cokinetic parameters are uniformative), while they applied a continuous
optimization scheme (Gauss-Newton optimization), instead of a discrete one,
as it is the case in our work. It also lies between frameworks of concurrent
segmentation and registration [236], [242], [151], [5] and image reconstruc-
tion and modeling [163], [154]. The main difference of our approach with
respect to the concurrent segmentation and registration works is that, our
ADC variables are continuous and have unique values on a voxel-wise basis,
whereas segmentation labels are discrete and common within regions. In
that sense, methods for image reconstruction [163] and denoising [159]
are closer to our approach; those however are defined in a single spatial
domain and do not require deformable image registration. On the other
hand, methods for recovering appearance change and motion in image se-
quences target a similar goal, but they account usually for global motion
or smooth deformations, as well as systematic changes in appearance ex-
hibiting spatial or temporal structure that can be modeled [22]. Intensity
changes in domain-specific cases are captured by learning models using
training examples. Such training images are not available in our case where
the tumor appears in different areas of the body.

By elaborating more on concurrent segmentation and registration frame-
works, we aim at finding the optimal deformation fields of the DW images
together with the optimal ADC values in a one-shot optimization approach.
Alchatzidis et al. [5] proposed a joint group-wise registration and segmenta-
tion method for brain atlas selection, but they optimized the deformation
fields iteratively, whereas Sotiras et al. [189] didn’t include a segmentation
layer in their group-wise, one-shot registration method. In our case the
one-shot optimization problem imposes additional challenges. To this end,
linear programming and duality [101] is used to determine the optimal solu-
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tion to the joint problem. It is also worth to mention that our framework is
modular with respect to the registration/annotation grid and can be adapted
to the application domain. Finally, to the best of our knowledge, we are
the first to propose a DWI registration scheme that optimizes explicitly the
derived ADC map. Very recently, two other works of DWI registration were
published [67], [211] aiming at computing the ADC without motion artifacts.
Guyader at al. [67] examined the influence of pairwise registration on the
ADC calculation, while Veeraraghavan et al. [211] proposed a group-wise
DWI registration method that requires structure segmentation, thus is not
completely automated. Both methods (i) use mutual information criterion for
image similarity which is less appropriate than the fitting error to a diffusion
model we are using. (ii) calculate the motion for each image independently
without considering temporal consistency (smooth transition in time) and (iii)
extract the ADC by voxel-wise curve fitting from the warped images without
accounting for spatial constraints.

In the remainder of this chapter, a review on joint estimation approaches
on various medical image analysis studies is presented in 4.1. Then in
section 4.2, we are going to discuss how to formulate the joint problem as a
Bayesian MAP estimation, based on which we are going to discuss how to
formulate the problem as energy minimization by considering discrete de-
formation elements and parametric values. Furthermore, the experimental
validation is presented in section 4.3. In section 4.4, a discussion concludes
the chapter.

4.1 Prior Work

A typical Medical Image Analysis framework consists of various tasks, since
an optimal interpretation of medical images requires an integration of the
medical images. Integration (or image fusion) consists most of the times of
two steps: (co-)registration and integrated display (or presentation, or visu-
alization), where the registered monomodality/multimodality information
is rendered. This second step implies some form of image segmentation
or classification, whereas in case of tumor or organ detection, a detection
task is incorporated into this step. Moreover, in case the examined imaging
is subject to high temporal noise, e.g. Time-of-Flight Imaging [16], image
denoising is desired within the general framework too. Finally, in the case
of 4D dynamic imaging, the corresponding integrated display step is the
computation of an image of the estimated quantized parameter, based on
which cancer/tissue characterization is performed. Therefore, parametric
image reconstruction towards removing potential outliers from the image
that would hinder the accuracy of any statistical analysis on such an image,
is often desirable, a task closely related to denoising, image segmentation
and boundary finding.
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With notable exceptions, the afore-mentioned tasks have been treated
as separate problems in medical imaging research, though it is often the
case that the solution to one impacts the solution to the other(s). However,
over the recent years a great amount of studies have been undertaken that
jointly estimate the optimal solution of the different tasks involved. The
vast majority of those studies deal with integrating registration and organ
segmentation. Combined segmentation and registration has potential ap-
plications in a number of areas; essentially wherever both processes have
previously been performed sequentially. Examples include the registration of
brain atlases towards brain segmentation [241, 10, 242, 236, 223, 161, 157,
49, 240, 190, 61, 62, 151, 4, 6, 82, 177, 179], joint registration of dynamic
4D images and tissues segmentation of images of various organs, such as
the breast [237], the heart [129, 127], the kidney [251] and the lung [239],
motion estimation and shape identification [187], joint registration (mapping
from the atlas to the image space), segmentation (anatomical labelmap), and
intensity correction (image inhomogeneities) [162], simultaneous non-rigid
registration, segmentation, and tumor detection [122], jointly estimation of
motion and the pharmacokinetic parameter in DCE-MRI [20], as well as joint
registration and CT image denoising [16].

The most preferable approach to the joint solution among the afore-
mentioned studies, is the computation of a maximum a posteriori (MAP)
joint estimate of registration and another parameter, i.e. segmentation,
quantized parameter etc. Such an estimate of the unknown quantities had
been initially used in Bayesian image restoration [64]. That first approach
could be described as follows: suppose X = {x;;,i=1,--- ,m;j=1,--- ,n} repre-
sents a true but unobservable 2D image, where x;; measures the color/gray-
level/intensity of the pixel of the i row and j* column. The available data
are Y, a version of X distorted by noise (e.g. additive Gaussian noise) and/or
some other form of distortion. Then in a Bayesian image restoration method,
one would seek to maximize p(X|Y), the probability density for X, given Y
[54], where p(X|Y) is proportional to p(Y|X)p(X). The likelihood term, p(Y|X),
models the distortion process and the prior, p(X), is chosen to represent
prior knowledge, usually about local dependence or spatial correlation within
the image. Introduced by Geman and Geman [54], Markov Random Fields
(MRF) are most of the times used as priors in the Bayesian formulation,
to represent spatial information in the image. Based on the Hammersley-
Clifford theorem that implies that any probability measure that satisfies a
Markov property is a Gibbs measure for an appropriate choice of (locally
defined) energy function, the prior probability p(X) can be expressed as
p(X =x)= ﬁexp(— BE(x)), where x is the state the image X can be (equiva-
lently the random variable X having value x) and f is a parameter which
controls the "peakiness" of the distribution and can be interpreted as the
inverse of the temperature in statistical mechanics. Moreover, E(x) is is an
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energy function to be expressed as a weighted sum of clique potentials. MAP
formulation (and Bayesian approach in general) had been aknowledged for
being well-suited to restoration, particularly for handling general forms of
spatial degradation. In the same time though, it was also computationally
demanding, the number of possible intensity images is LY, where L denotes
the number of allowable gray-levels and M is the number of pixels or voxels
in the image, which ruled out any direct search, even for small images, while
some assumptions on the image and degradation model became necessary.
Geman and Geman [54] gave an ingenious but computationally demanding
solution, through the use of simulated annealing [93] and the Gibbs sam-
pler. Due to that computational burden, annealing methods - despite their
theoretical guarantees with respect to the attained solution - had later no
practical use.

That initial work of Geman and Geman [54] inspired researchers to apply
the Bayesian framework to restore medical images, such as PET images
[33, 42, 114], as well as to use it for joint parameter estimation, such as joint
non-rigid registration and tissues segmentation [236, 161, 237, 122, 20].
The joint problem is casted as a problem of MAP estimation of the segmen-
tation labels & = [Sy,---,S,], transformations J given n datasets I;,---,I, and
the solution is posed using MRFs. The Bayesian problem may be stated for
two datasets I} and I, as:

P(1,1|S,T)P(S,T)
P(11 ,12)

P($8,T|IL,bL) = (4.1)

If data independence is assumed, then P(I;,) = P(I;)P(I), which, for consis-
tency, implies P(&8),82,7 ) = P($1)P($2)P(T ). To determine &, &2 and 7 is by
following MAP estimation problem:

(cSA’,F/AV) = argmaxs g logP(8,T |I1,1) (4.2)

In general, this results in a system of equations for which there is no ana-
lytical solution. The most common way to compute the MAP estimate is by
adopting an instance of the expectation maximization (EM) algorithm [? ], In
that way, the estimation of the parameters is improved by iterating between
the Expectation-Step (E-Step) and Maximization-Step (M-Step) [161, 62]. On
the other hand, Wyatt and Noble [236] used the Iterated Conditional Modes
(ICM) algorithm [17] to get a MAP estimate of their joint registration and
segmentation problem, which ensured quick convergence to a local minimum
(14-8 iterations). Gradient-based methods have also been applied in various
joint MAP estimation problems [237, 122, 20].

A discrete formulation of the joint registration and segmentation estima-
tion problem has also been designed by Parisot et al. [151] for segmenting
gliomas, as well as by Alchatzidis et al. [4] and more recently by Shakeri et al.
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[177, 179] for segmenting sub-cortical structures of the human brain with
the use of atlases. Alchatzidis et al. [4] took into account discriminatively
learned through Random Forest voxel likelihoods, used as priors for the
segmentation labels, while in Shakira et al. work, Fully-Convolutional Neural
Network (F-CNN) segmentation priors were incorporated into the Bayesian
framework, deriving better in comparison to the Random Forest-based priors.
All the afore-mentioned works with a discrete formulation were based on the
initial work of Glocker et al. [58] on deformable graph-based image registra-
tion. Dual Decomposition (DD) [97] was applied in [4], while FastPD [101]
was applied in [151, 177, 179], both offering global optimality guarantees.

Finally, besides the popular MAP estimate, three more estimates have
been found in the literature for joint parameter estimation. Gooya et al.
[61, 62] defined the solution to the problem of joint segmentation registra-
tion and atlas parameter estimation as the maximum of the conditional
likelihood of the observed images, while EM was used to iteratively optimize
the estimation of the parameters. Then in studies in which segmentation is
approached through edge detection, the Ambrosio-Tortorelli approximation
of Mumford-Shah model, which is traditionally used for image segmenta-
tion, has been modified so that the new functional can also estimate the
spatial transformation between images [74, 49]. The goal in this case, is to
find the transformations that match the edge sets that can be computed in
the images. The functional is minimized by finding a zero crossing of the
variation. A geometric variational approach (active contours) was followed
by Yezzi et al. [241, 242] too to identify similar curves in images that are
related by mapping (registration). Then [10] proposed a strategy for the
segmentation of brain from volumetric MR images which integrates 3D seg-
mentation and 3D registration processes. The segmentation process is based
on the level set formalism. A variational approach was followed by Bauer
et al. [16], which combines the two highly intertwined tasks of denoising a
time-of-flight (ToF) image and registration of the ToF surface of the thorax
with the corresponding surface extracted from CT data. Last but not least,
Iglesias et al. [82] use variational expectation maximization (VEM) and the
Demons registration framework in order to efficiently jointly identify the
most probable segmentation and registrations of T1-weighted brain scans,
guided by a set of proton density (PD) MRI atlases.

4.2 Proposed Method

Let us again consider a sequence of m DW images, each one described by
intensity values s,(x),r = 1,...,m, with x € Q;, Q;, € R3. On top of that, let’s
consider an extra image z(x) with x € Q; which represents the ADC template
corresponding to the previous image sequence. This ADC template is re-
garded as the reference frame of an optimal alignment among the DW images.
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We therefore seek for two results: a set of deformations D = {D : xg = D;(x,),
t ={1,...,m}} which map mutually corresponding points from the m-image
spaces to the same point of the reference frame Q. and the optimal - in terms
of spatial consistency and smoothness - ADC values that can be calculated
when all m-images are mutually aligned. The proposed registration algorithm
is based on the assumption that, motion’s instantiation can be attributed to
the acquisition of the first DW image, i.e. the one with the smallest b-value
(s; image); sp is considered as the reference image, to which image space all
the rest of the sequence should be mapped and D is regarded zero. This
latter assumption is motivated by the fact that the images are acquired
sequentially, in a short period of time, from the same patient. Therefore,
we wouldn’t expect them to differ drastically in terms of the underlying
anatomic structure (we expect local, non-linear rather than global, linear
transformations to have been occurred). This joint mapping and ADC refine-
ment aims at (i) correcting deformations due to (local) organ deformations
or motion, (ii) ensure temporal consistency in the diffusion process and (iii)
impose spatial consistency on the deformation fields and the derived ADC
map. The appearance model used for the calculation of the ADC, as well as
the deformation model, are jointly optimized to define the reference pose. In
the following section, the problem formulation is presented, first for the case
of negligible deformations and then for all possible deformations.

4.2.1 Appearance (diffusion) model

In DWI, we assume that the intensity values of the images depend mainly
on the amount of signal loss occurred during the application of two equally
rectangular gradients before and after the 180°-refocusing pulse [15]. The
relation between the signal attenuation expressed by the signal intensity
s and the diffusion of the water molecules in a microscopic level is known
to be exponential [111]. Having acquired the images with high b values
(> 50s/mm?), we can assume that the DW images are insensitive to vascular
capillary perfusion and diffusion is the only type of motion present, thus the
ADC is equal to the water diffusion [95]. Therefore the relation between the
ADC (referred to with the letter z) and the signal intensity s can be modeled
as:

St = sle_("‘_b‘)'Z (4.3)

where s; and b, the image intensity vector and b-value at instant ¢ respectively,
s; the signal attenuation for the smallest b value (b;) and z is the ADC
vector (all vectors are linearized 3D matrices). Denoting with y; the natural
logarithm of the image vector s, the relation between the image vector and
the ADC can be expressed as:

yt = —biz+biz+yr +ng 4.4)
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where n¢ the noise vector. We are assuming noise to be zero mean i.i.d., thus
the multivariate pdf of n; is given by:

1
xp{—ﬁntTnt} (4.5)

n

P(ng) = 1 e
Y en¥oy

where M the size of the linearized noise vector and ¢ denotes the variance

of the noise process. If all m» DW images are perfectly aligned, the standard

way of estimating ADC is by calculating the slope of a line fitted on the plot

of the logarithm of the relative signal intensities of the tissue against the

b-values: _ -

in1 (bi —b)((yi —y) (4.6)
m \2 *
iz1 (bi —b)

where b, y the mean b-value and mean of the natural logarithm of the image

vector respectively. We approach the calculation of z using the Maximum a
Posteriori (MAP) technique:

7 —

Zz=argmaxP(z |y, - ,¥Ym) 4.7)
Zz

From Bayes’ rule, equation 4.7 can be written as:

A P(Y17>Ym’Z)P(Z)
Z = argmax (4.8)
gz P(Yh 7ym)

Since the denominator is not a function of z, it does not influence their esti-
mation and therefore can be ignored. Taking the log probability of posterior
probability:

2 = argmax{[logP(y1, - ,¥m | 2)
z
+logP(z)]}

(4.9)

Next we solve equation 4.9 assuming there is no deformation between the
DW images.

From equation 4.9, since n;’s are assumed to be independent:

m
Z = argmax{ [logHP(yt | z)
z t=1

+1logP(z)]} = argmax{[ilogp(yi | z) (4.10)

z t=1

+1logP(z)]}
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Since noise is assumed to be i.i.d. Gaussian, from equations 4.4 and 4.5 we
have:

P( “'7Ym| )
in: Xp{— ||yt+z(bt_b1> _YIHZ}] _
= 27:@2)% 203 (4.11)
Xo—[lye+z(be—by) —yil> M 2
— —log(2mo
[; 207 3 log(270;)

Substituting equation 4.11 in equation 4.10 we obtain:

7=

m _ Ry o2
argmax{[}" lye +z(be —b1) —y1|

z = 207
+1logP(z)|}

The derivation of a solution for ADC based on equation 4.12 is the first
contribution of our work, in which the ADC can be calculated based on the
data (DW images) and some prior knowledge about context dependencies on
ADC map values, acting as regularization constraints.

(4.12)

4.2.2 Joint appearance and deformation model

Assuming now that some motion has occurred during the acquisition process
of the DW images, equation 4.3 takes the form:

ytoD¢ = —biz+b1z+y; +n¢ (4.13)

where D; denotes the deformation field that maps s; to the ADC template
space. In this case, we would like to compute the m — 1 deformation fields that
would bring the m DW images to a common reference space in which the ADC
map can be accurately estimated. Let’'s denote the geometric deformation
that maps the DW image s; to the common (ADC) space with D¢(x) = x+ d¢(x),
where d; is the displacement field of image s;. The joint posterior probability
for the appearance model parameters and the set of displacement fields
[dy,- - ,dn] is given by:

P(dlv"' ,dm,Z ‘ Y1, 7ym) -
P(Yl,"- »Ym ‘ d27"' 7dm7Z)P(d27"' 7dm7Z) (414)
P(y17"' »Ym)

The random fields d; and z are once again assumed to be statistically inde-
pendent, as they refer to three independent processes. Therefore, the joint
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d, dma dm

Figure 4.1: The node and the edge system of all the connected graphs.

With green and brown color the relationship within the grid nodes belonging to ADC and each of the deformation
field respectively (intra connections). The blue dotted edge represents the dependencies among deformation field
and appearance model (coupling relationship), whereas pink edges denote the temporal relationship between
successive deformatio fields (inter relationship).

MAP solution could be derived similarly as in the previous section, resulting
in the following optimization problem:
27d27"' 7d;n =

ytoD¢+z(be—by) —yi||?
argmax{[z —| 2( 3 ) —vill
ZdZa 7dm 1= Gn

+logP(z )+10gP(d2,--~ ,dm)]}

(4.15)

The latter equation for computing a joint solution for ADC and deformation
fields, using some priors on context dependencies on z and deformation
fields, is the second contribution of our work.

4.2.3 Objective Functions: MRF-based Energy Formula-
tions

We formulate our joint DWI registration and ADC modeling problem using
MRF. We opt for constructing simultaneously with registering the images
the ADC map, while image s; is considered as the reference one. For the rest
of the thesis, we will refer to the proposed method as JointRef1.

Energy Formulation of JointRef1:
The joint model now is parameterized by a set of m isomorphic grid graphs
G ={Gy,...,Gp+1}, the first m — 1 being superimposed onto the corresponding
DW image, whereas the last grid graph is superimposed onto the ADC map
(zc image) that we want to compute. The label set for the displacements is a
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quantized version of the 3D displacement space, whereas the label set for
the ADC map are quantized versions of the ADC intensities.

For every control point in each grid i there is a node p that represents
either its displacement if the grid is a deformation grid or the ADC value in
case of the last grid (p € 7',with 7" denoting the set of all nodes on a grid
that encode the latent variable). The nodes in the graph are connected with
a set of edges & that encode the interactions between the deformation and
the ADC variables. In the end, the displacement of a voxel x of the image
will be determined by the control point’s displacements and the influence
of each control point on x, which is given by cubic B-splines. The diffusion
value on a voxel of the z. image will be determined in a similar way.

Energy Terms: The constructed graph is associated with an energy, consist-
ing of four pairwise terms:

Ejoint(d27 e 7dm7ZC) =

m—1
d,
2‘inter Z Z Vinter(lgtJﬁH)
m

d; 1d;
F i X, Y X Vira G 1G) (4.16)

1=2peGiqe(N(p)NG;)

+A’intra2 Z Z zntra (lffvlé‘)

PEGu4+1g€(N(p)NGpiy1)

+ A Z Y Y v

=2 p€G; p€Gy11

where V., is a potential for temporal regularization (inter-deformation depen-
dency), Vipran(+,-),n=1,---,2 are the potentials imposing spatial constraints
on the deformation fields and the ADC map respectively, whereas V, is the
coupling potential. The constants Ajyer, Aintran,n=1,---,2 and A, are used to
weight the different types of potentials.

Coupling term of JointRef1: The coupling term (data term) that penal-
izes deformations that lead to an increase in the matching error among z,
and the signal attenuation at a given instant ¢, based on equation 4.3. Thus
the coupling term in our proposed method is computed as follows:

dz <)
AR / Alx—pl)
(4.17)

It is defined on the image domain Q and a function 7 is used to back project
the voxel-wise information on the grids’ control points, by determining how
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much voxel x influences the control point p.

Spatial and temporal deformation smoothness: We assume that the
organs’ motion evolves smoothly during image acquisition process therefore
we expect the deformation on each DW image to not deviate much from
the deformation computed on each immediate neighbor, meaning the image
preceding it. In the same time, each deformation field should deform the
tissues in a way in which the anatomical information is retained. Therefore
in order to impose temporal and spatial smoothness on the deformation
fields we penalize the magnitude of displacement vector differences. The
pairwise potential would then be:

G
v, oy = 147 Za] (4.18)
P4l
In case of temporal deformation smoothness (V;..;) p=¢g and j=i+ 1, whereas

in case of spatial deformation smoothness (V,,,,1) i = j. For both cases we
are assuming a 8-nodes connectivity.

ntra

Spatial smoothness on ADC map: The term in both energy formula-
tions related to the spatial constraints applied within the ADC map of our
appearance model (z) is the squared error between two different appearance
labels was used towards this end:

1

V'ntra2 (ZIZav ch]) = (Zlg - Zla)za (4 19)
Again we are assuming a 8-nodes intra-image connectivity.

Implementation Details: Our algorithm follows a coarse-to-fine process
that first estimates parameters at a coarse spatial image resolution level
and then updates the solution to a finer resolution level. We applied a
multi-resolution scheme with 3 resolutions levels; two levels in which the
joint problem is solved and one at full image resolution in which only the
appearance model is optimized, keeping the previously obtained deformation
fields fixed. A fast optimization scheme relying on linear programming
and duality [101] is used at each step. Finally, regarding the run-time
performance of the method, all the experiments were computed on a 8-cores
machine (3.6 GHz processing power) with a memory requirement of 4 GB. It
took approximately 26 minutes to co-register the images of a sequence of
size of three, using five sub-iterations in each pyramidal level for refining
the label space. The number of sub-iterations to be used is a factor that
heavily affects the computational time of our method.
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(5 b-values)
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set of co-registered diffusion MiGroup
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on method)

registration

JointRefl
(proposed)

Figure 4.2: The image processing pipeline.

Circles demonstrate each of the computations performed towards computing an ADC map with motion correction.
In NoReg case, apparently no registration occurred, therefore the original rather than a deformed version of the
DWI sequences was inputed to the diffusion model to compute the 7. or z, map.

| Differentiating features | NoReg | MIGroup [189] | MIRef1 [189] |  PhyGroup [104] | PhyRef1 [104] | JointRefl |
| Deformable registration? | - | yes \ yes \ yes \ yes \ yes \
| Groupwise registration? | - | yes \ yes \ yes \ yes \ no \
\ Reference space | - | intermediate | 51 \ intermediate \ 51 \ 51 \
\ Data term [ - ] MI | MI | Fit.Error on Diff.Model | Fit.Error on Diff.Model | SSE of Eq.4.3 |
| Temporal smoothness? | - | no \ no \ no \ no \ yes \
|  Spatial constraints | - | on D \ on D ‘ on D ‘ on D | onbDandz |
| Output [ - D | D | D | D | Dandz |

Table 4.1: Comparative information on the examined registration methods. Since NoReg is not a method
rather than a "scenario", only its additional features (ADC maps computed without registration) are mentioned.

4.2.4 Comparison with Other Methods

Besides our proposed method (denoted in the rest of the paper as "Join-
tRef1"), other four fully automated registration methods are examined, which
differ on various features MRF-based image registration methods hold (see
Table 4.1). The four registration methods examined for comparison in the
current study are the following: the original deformable group-wise registra-
tion using a physiological model proposed proposed in [104] ("PhyGroup"), a
slightly modified version of the latter one in which, similarly to "JointRef1",
image s; is considered as the reference image ("PhyRefl") and therefore is
not deformed, another groupwise registration approach that uses MI for the
inter-image matching criterion, inspired by the work of Sotiras et al.[189]
("MIGroup") and the a group-wise registration as the latter one, only again s;
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is preselected as the reference one ("MIRefl"). In the same time, we would
refer to the case where no image registration took place as the "NoReg"
scenario.

Moreover, based on the registration method, the computation of paramet-
ric maps varies too (see "Additional features" row in Table 4.1). In case of
NoReg, equation 3.2 is used to compute both a 7z, and zy, map, whereas for
the case of a registration method, once all DW images are co-registered, a
voxel-wise calculation of a z. or z, map (always depending on the b-values
set used), would be based on warped DW images:

Yiey (be—b) ((groDy) — 8)
£ (be—b)*

where Z the ADC computed through linear regression and based on image
registration, g; = Ins¢, b the mean b-value and g the mean of In(s¢oDy). In case
of our proposed method JointRefl, as descrided before, an "extracellular
diffusion" map 2. is derived explicitely by our joint optimization scheme,
whereas an "extravascular diffusion" map is computed through the above
equation. Finally, note that for PhyRefl, MIRefl and JointRefl, D; would
have only zero values in the above equation. In Figure 4.2 one can see the
steps towards computing the parametric maps from the DWI sequence.

(4.20)

7=

4.2.5 Calculation of Optimal Weights of Potentials

The optimal values for the weights on the potentials of the energy formulation
in each registration method examined were computed based on the simulated
data, described in the next section. Using the simulated deformation fields
and ADC map, we computed the potentials of each term in the MRF energy
formulation of each method. Let's denote the matrix of the potentials by
V. Then we found the optimal weights on these potentials by solving the
linear least-squares: c,, = min. 5||V - ¢||?, subject to ¥ A, =1, 4, > 0, where
¢ = [A1...Ay] the vector of the weights. In that way, we avoid learning the
weights through brute force by running the same experiment many times,
which would be a time costly approach.

However, FastPD can be applied only to pair-wise energies and there-
fore it cannot be used for the case of Eyrrpr, - Which includes high-order
cliques in its energy formulation. Inference in Markov Random Fields (MRFs)
with higher order cliques is possible and a lot of research efforts have been
devoted recently to investigate it (see for example [83, 167, 96]). However,
the gain of the faithful modeling comes at the expense of significantly in-
creased computational burden. Our discrete high-order MRF-based energy
minimization problem was solved using Dual Decomposition (DD).
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Figure 4.3: Real data.
An axial slice of the 3D image of a patient, with b values of 20, 50, 150, 400 and 800 s/mm? (from left to right).

Figure 4.4: Simulated data

An axial slice of the simulated 3D images of the same patient as in the above figure. The very left image is
the corresponding slice from the simulated ADC map, whereas next to it from left to right are the slices of the
simulated images of b values of 50, 150, 400 and 800 s/mm? ("b 20" image was used to simulate the diffusion
process).

In our framework, the graph is decomposed into subgraphs that con-
stitute the set of subproblems, such that they cover (at least once) every
node and edge in each graph. One slave problem is defined for each line
parallel to a coordinate axis in space and time (corresponding to pairwise
interactions), and one slave is defined for the higher order clique (related to
the data term). Two different optimization schemes are used for the solution
of the subproblems: the FastPD optimizer [101], described in Chapter 2,
guarantees for an almost optimal solution to such an NP-hard MRF problem,
for pairwise interactions and exhaustive search for the higher order clique. In
the end, global optimization is achieved through DD, that ensures agreement
among the solutions provided by all slaves.

4.3 Experimental Validation

In order to validate the proposed registration method, we used a data set
provided by the Centre Hospitalier Universitaire Henri-Mondor, France. The
data set consisted of 3D images of thirty-eight (38) different patients with lym-
phoma, scanned with a 3 Tesla MRI scanner using 5 b values: 20,50,150,400
and 800 (s/mm?). Therefore, the sequence of the images to be registered was
always of size 5 (m = 5) per patient. Both male and female patients were
included. The image size was 130x106x22 for every patient, with a pixel
resolution of 2.46x2.46 mm? in the axial plane and 5 mm? in the z-axis. Each
image had been manually annotated by experts to indicate the contour of
the tumor (see figure 4.3).

As part of the evaluation of the registration methods, simulated data
(deformation fields and a z, map) were created. As a first step, a simulated z.
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map of every patient was generated, based on his/her original s; image and
the k-means unsupervised image classification algorithm, applied on s; in
order to segment the image into different regions corresponding most likely
to different tissues. A fixed size of 10 segments was used for every patient.
The reason s; image was chosen for this step, was due to the fact that it
has the highest SNR among all the DW images in the original DWI sequence
(real data), a fact that facilitates the segmentation process. By assigning
different sampled ADC values to the different segments, the final segmented,
simulated z. map was created. Using the same b-values found in the real
DWI sequences, we computed simulated DW images of different b-values,
based on equation 4.3 (we assume that the mono-exponential diffusion
model holds true as the highest b-value of the set is less than 2000s/mm?),
resulting in simulated DWI sequences. Finally, deformation fields, composed
by displacement vectors of various norms, were applied on ther simulated
images towards deforming each of them except image s;. Different combina-
tions of a rigid transformation and a deformation (varying in extend) were
applied on each simulated DW image (see an example of a simulated z. and
a simulated DWI sequence figure 4.4).

4.3.1 Evaluation on the Simulated Data

The goal of this experiment is to find out which of the examined registration
methods better estimates the simulated deformation fields and z. image.
The Euclidean distance (ED) was used as a distance criterion for the defor-
mation fields, with the mean distance over the entire image region being
ED; = @erm‘ |D;(x) — D;(x)]]2, and averaged over the deformation fields error

being ED = ﬁz;ﬂzz ED;. On the other hand, the sum of squared errors of
prediction (SSE) was used as a measure to define the discrepancy between
the simulated z. image and the one computed or derived through each of
the examined registration methods, SSE = f@er|Q‘(zc(x) —7:(x))%. D and 7
are general notations of the estimated by each method deformation field and
ADC map respectively (for example z. becomes 7. in case of JointRef1). Figure
4.5 shows box-plots results on the ED and SSE across the DWI sequences
of the population. Note that simulated deformation fields were compared
with the inverse deformation fields derived by the examined registration.
The results in figure 4.5 were derived by registering sequences of size three
(three b-values used). There is a common pattern in both plots of figure 4.5,
where JointRefl method gives the smallest reconstruction error in recovering
both the deformation fields and the z. image. Then in figure 4.6, we plot the
same results as in figure 4.5 this time averaged over the entire population
and plotted over the number of b-values (size of DWI sequence). There is no
consistent pattern on the relationship between the number of b-values and
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the reconstruction error.
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Figure 4.5: The SSE with simulated data on retrieved deformation fields and ADC map.

Box plots across population of the average euclidean distance over the DWI sequence size between simulated
deformation fields and the inverse deformation fields derived by the examined method (left image) and the SSE
between the simulated z. image and the corresponding one calculated based on registered by the different methods
simulated DWI sequences. Z. and Z. are the maps compared against the simulated z. image for the case of
JointRef1 and all the rest registration methods respectively. The specific results were acquired using 3 b-values.
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Figure 4.6: Error bars with simulated data on retrieved deformation fields and ADC map over number of
b-values.

Same results as in figure 4.5, this time averaged over the entire population and plotted over the size of the DWI
sequence (number of b-values).
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Figure 4.7: The fitting error on the physiological model with real data.
Box plots of the (voxelwise computed) mean sum-squared fittting error (left) and each standard deviation (right)
across population. The specific results were acquired using 3 b-values in each case.
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Figure 4.8: Error bars over b-values with real data (fitting error on the physiological model
Plots of the corresponding results in figure 4.7 over the size of the DWI sequence (number of b-values), in which
the plot is coloured differently based on the post-processing scenario.
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Figure 4.9: Computed ADC maps by applying each of the examined methods.

Same axial slice of the Z. ADC map derived by equation 4.4 in case of NoReg and equation 4.20 for all the examined
registration methods, except the proposed one, JointRefl (bottom-right), which was computed explicitly by the
joint formulation (Z.). The red contour on the first image (up-left) denotes the tumor of the patient, delineated by
an expert.

Evaluation on the Real Data

The performance of the five registration approaches was also quantita-
tively assessed by examining fitting to the diffusion model error, based
on the real data. The SSE between the fitted, by the diffusion model
(see equation 4.3) and the real data was as the validation criterion. The
mean SSE is computed as: SSEeqn = ﬁZxGIQI(gt(X) —st(x))?, in case of NoReg

and SSEean = ﬁ{‘,xam(ﬁt(x) —s¢(x) oDy(x))? in case of the registration meth-

ods, where §¢(x) the fitted value. The standard deviation of SSE is com-
puted as: SSE;, = ﬁixqm((ﬁt(x) —5¢(X)) — SSEmean)?, in case of NoReg and
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SSEmean = ﬁixe\g\((ﬁt(x) — 5¢(x) oD¢(x)) — SSEmean)? in case of the registration
methods. 7., Z. and Z. were the ADC maps used in case of NoReg, JointRef1
and the rest of the examined registration methods respectively. The left plot
of figure 4.7 is the boxplot of the mean SSE across population and in the
right plot of the same figure, a boxplot of the standard deviation of SSE is
plotted. Then in figure 4.8 we plot the corresponding results but this time
averaged over the population and plotted over the number of b-values used.
We notice that JointRefl has almost equally good performance as PhyGroup
and PhyRef1, which actually use the fitting to the diffusion model criterion
in their formulation. Regarding the effect of the number of b-values on the
fitting to the diffusion model error, again there is no clear pattern, however
in most cases it slightly increases as we move to bigger number of b-values.
An axial view of the z. map derived by each registration method and NoReg
can be seen in figure 4.9.

4.4 Discussion

We proposed a novel joint deformable registration based on diffusion model-
ing that derives an optimal geometrical as well as appearance representation
towards more accurately depicting the physiological process taking place
during DW image acquisition. Two experiments were designed to evaluate the
registration performance, based on simulated and real data respectively. In
terms of a reconstruction error experiment using simulated data, JointRef1
outperformed all the rest in recovering more accurately both the simulated
deformation fields applied to the simulated DWI sequences, as well as the
simulated ADC based on which the simulated sequence was created. More-
over, JointRefl showed the equally good to PhyGroup and PhyRef1 results
on the fitting error to the diffusion model using the real dataset. PhyGroup
and PhyRef1 use the fitting to the diffusion model criterion in their energy
formulation. Regarding whether a preselection of a reference space is a
better approach, we noticed that the methods registering the images into
an intermediate reference space gave better results, as MIGroup performed
better than MIRef1 in all experiments, and PhyGroup yielded better results
than PhyRefl, except on the fitting error.






Chapter 5

Extraction of DW-MR Imaging
Biomarkers through the Proposed
Registration Methods

DWI is a non-invasive functional imaging technique that explores the extra-,
intra-, transcellular and intracapillary motion of water molecules in the body,
as a result of their internal thermal energy [155]. The sensitivity of the DWI
sequence to water diffusion depends on a parameter called b-value, which
is proportional most of the times to the amplitude of the applied diffusion-
sensitizing (bipolar) gradients or the duration and the time intervals between
the gradients. By scanning the patient with different b-values, quantitative
parameters can be computed and displayed as parametric maps (one value
per voxel). The main argument towards their use lies on the fact that any
quantitative parameter is independent of the magnetic field’s strength. Thus
by analysing such an image instead of individual DW images, the risk of
false-positive caused by the T2 shine-through effect (hyperintensity on high
b-values caused by high proton density and not increased cellularity) is de-
creased. The ADC parameter, which reflects the gradient of water diffusivity
in the body, has been broadly aknowledged as an imaging biomarker towards
lession detection and characterization, by assessing its type and stage, as
well as prediction of treatement’s response [108], [75], [8]. The word “appar-
ent” is added because other factors than random diffusion may influence the
mobility of water, such as vascular capillary perfusion, a potential imaging
biomarker that hasn’t been thoroughly investigated in previous works.
Most of the studies that try to estimate the role of DWI in oncology, don’t
take into account any misalignemnt among the images used to compute
the ADC map. These misalignments could be caused by movement of the
subject during image acquisition or physiological organ or muscles defor-
mation due to respiration and peristalsis. All these factors could result in
misregistration of the images acquired with different b-values and adversely
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affect the quality of ADC [108]. Motion correction in DWI has been recently
studied by some researchers, examining various image registration schemes,
as reported in the next section. Nevertheless, to the best of our knowledge,
there hasn’t been any published work in DWI, on evaluating whether image
registration improves the quality of ADC as an imaging biomarker.

In this chapter, we examine the effect of image registration on the poten-
tial of diffusion-based parameters to characterize lymphomas based on their
types and level of malignancy (disease’s stage), as well as assess or predict
tumor’s resistance to therapy (treatment response).

5.1 Prior Work

The value of whole-body DW-MRI in comparison to other whole-body imaging
modalities used for detection characterization of various tumors in the body,
as well as for patient management has been the objective of many studies over
the last decade [108, 75, 8]. What most of the studies trying to quantitatively
assess the role of whole-body DW-MRI in oncology have in common, it’s the
fact that they don’t take into account any misalignemnt among the images
used to compute the ADC map. These misalignemnts could be caused by the
physiological water motion and bulk tissue movements such as respiration
and peristalsis. Spatial alignment of the acquired DW-MRIs, could also be
lost due to subject’s movement(s) during image acquisition. All these factors
could result in misregistration of the images acquired with different b-values
and adversely affect the quality of ADC, a parameter susceptible to such
artifacts [155, 108]. In most studies on DWI, the issues of image quality is
addressed by averaging a set of DW images acquired several times [95, 84].
This approach though only improves the SNR of DWI and doesn’t correct
for motion, while it results in longer acquistion time. Moreover, the solution
of a breathholding image acquisition protocol requires short scan time and
might deteriorate image quality just by causing irregularity in respiratory
pace [90, 204], whereas motion-compensation techniques, such as trigger-
ing or gating don’t perform well in case of irregular or heavy breathing [34].
Retention of the spatial information underlied on the ADC map requires
registration of DW image.

Mazaheri et al. [134] applied a rigid type of registration on a multi-b-
value DWI sequence and reported a decrease, through motion correction,
on the normalized root-mean-square error (NRMSE) of the proposed by Le
Bihan et al. [111], diffusion model. However, non-rigid alignment of the DWI
sequence becomes necessary in order to cope with the non-linear nature of
motion caused by cardiac pulses or respiration [188]. To this end, Guyader
et al.[67] examined the influence of groupwise deformable registration on the
uncertainty and reproducibility of the ADC map. A fully automated regis-
tration scheme was proposed, consisting of an initial groupwise registration
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step among odd and even subvolumes acquired by the same b-value, in
order to compensate for observed artifacts between the odd and even slices
of their acquired images. As a second step, pairwise registration between
volumes of different b-value was performed, resulting in a global alignment
into a common image space. In the same time, Veeraraghavan et al. [211]
suggested a semi-automated framework in which a user should first identify
structures of interest in a reference image (that choice varied). These struc-
tures are then volumetrically segmented by a segmentation algorithm and
used to guide an affine registration algorithm, which aligns the images in a
groupwise manner. In both these studies the "image registration" scenario
was assessed as the best among all in improving ADC map’s computation,
using different evaluation criteria. In fact, in [67], the effects of interpolation
and Gaussian blurring, as alternative strategies to reduce motion artifacts,
were considered, which were proven to be inferior to the registration ap-
proach. The similarity criterion applied in both studies for matching images
of different b-value was Mutual Information (MI).

5.2 ADC Calculation based on a Physiological Model

Let us consider a sequence of m DW images acquired by m different b-values,
each one described by intensity values s¢(x),t =1,...,m, with x € Q;, Q; € R3.
The intensity values of any DW image are assumed to depend mainly on the
amount of signal loss due to microscopic translation motions occurring dur-
ing the application of the Stejskal-Tanner sequence [15]. This microscopic
translational motion, known as intravoxel incoherent motion (IVIM), is quan-
tified by the ADC parameter, which integrates both the effect of molecular
water diffusion in biological tissues and perfusion (microcirculation of blood
in the cappilary network) [111]. Let’s also consider an extra image z(x) with
x € Q. which represents the ADC template extracted from the afore-mentioned
image sequence, assuming that the images are aligned; the ADC template
is regarded as the reference frame of an optimal alignment among the DW
images.

Depending on the nature of the desired ADC map, a proper configuration
of b-values should be designed. In most studies b-values > 100s/mm? are
applied, due to the fact that above that threshold the effect of vascular
capillary perfusion is negligible and a "true or extravascular diffusion” map
can be attained. On the the hand, it is assumed that an ADC derived by
using small b-values, will not only depict a macroscopic water diffusion but
will have a component of "true extracellular diffusion". For the rest of the
article, we will use the underscore v and c¢ to refer to these two different types
of ADC (zy and z.).

The ADC can be calculated using at least two DW images. For a pair
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of b-values, each less than 2000s/mm?, the relationship between the signal
attenuation expressed by the signal intensity s and ADC image z is usually
modeled by a mono-exponential function:

Sy = sle_(brbl)'i (5.1)

where s; and b; the image intensity vector and b-value at an instant 7 =1,
s; and b, the image intensity vector and b-value at a later instant ¢ = 2.
Depending on the set of b-values used, Z would represent either z, (diffusion
of extravascular nature) or z. (diffusion of extracellular nature). The reason
why the highest of the two b-values should be less than 2000s/mm? is due
to the fact that above that limit, the mono-exponential relationship doesn’t
hold true anyomore. There is evidence that the relationship would then
be better described by a multi-exponential model [148], though b-values of
such high range are beyond practical SNR limits.

The estimation of the ADC is expected to be more accurate in case of using
more than just images. Its estimation could be then approached through
regression analysis on the DWI sequence. The most common method to
carry out regression analysis in DWI is linear regression, in which the ADC
is computed as the slope of a line fitted on the logarithm of the relative signal
intensities of the tissue against the b-values [104]. In that case the ADC
would be:

Yii(be—b)(g—8)
=\2
Lits (be—b)
where z the ADC computed through linear regression, g; = Ins;, b the mean

b-value and g the mean of In(s¢). Again depending on the range of b-values
used, an ADC map of a different nature can be computed (z, or Z).

7=

(5.2)

5.2.1 Histopathological Classification of Lymphomas and
Tumor Staging with Deauville Scores

The classification of lymphomas into Hodgkin (HD) or non-Hogdkin (NH) is
based on histopathological,immunophenotypical, molecular/cytogenetic and
clinical features extracted through a series of related exams. An overview of
the current WHO classification of lymphomas and how we arrived at it can
be found in [199].

On the other hand, the stratification of lymphomas into different dis-
ease stage, is based in this study on Deauville scores: evaluation scores
based on visual interpretation of FDG-uptake in a PET scan. Two reference
points of the individual patient are considered, which have demonstrated
relatively constant uptake on serial imaging. The two reference organs are
the mediastinum (aka blood pool) and the liver. The scale ranges from 1 to 5,
where 1 is best and 5 is the worst. Each FDG-avid (or previously FDG-avid)
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lesion is rated independently. In our case, the Deauville scores were given
to each patient once he/she had completed two cycles of chemotherapy
(approximately a year after of the onset of the treatment).

5.2.2 Feature extraction for Lymphoma Characterization

Tumors are known to be heterogeneous, therefore our goal is to compute
features extracted by the diffusion- or perfusion-based maps, that could aid
us in characterizing the lessions based on intra and inter-tumour hetero-
geneity [88]. To this end, statistical features over the entire tumour regions
of interest (ROIs), were computed based on a histogram analysis on these re-
gions. Therefore, besides the mean, standard deviation and mode of tumors’
ROI, first-order histogram parameters (kurtosis, skewness, 75th and 95th
percentiles of the tumor’s intensity distribution) were extracted.

5.2.3 Classification of Type of Lymphoma

One of our goals in this work was to examined whether the proposed method
could improve the potential of DWI in automatically classifying lesions into
HD or NH lymphomas, based on the statistical features described in the
previous paragraph. A classifier based on Linear Discriminant Analysis
(LDA) was designed that would assigns labels (HD, NH) to each of the testing
feature vectors, classifying them to one of the two classes. The feature vectors
were the input to the LDA algorithm. The measure of closeness is the log
of the probability density function of the testing vectors, multiplied by the
class’ prior probabilities. In the same time, the probability density function
of the testing vector is based on the number of the neighboring to it vectors
in each class. The classification through LDA is based on maximizing the
ratio of between-class variance to the within-class variance in the training
data set.

Similarly to [103], we trained the classifier by dividing the feature vectors
into training and testing sets, using an 75% (training): 25% (test) ratio. This
division is repeated M times in order to provide a better estimation of the
performance of the classifier. In order to estimate if the differences on the
classification results between the compared methods were significant, we
chose a large value for M (10%). The metrics used to evaluate the performance
of the classifier were the recall, the precision and the overall accuracy.

5.2.4 Subjects - Real Sequences

Thirty-eight patients,(21 males, 17 females; median age: 45 years, range
19-77) with histologically confirmed lymphomas (12 Diffuse Large B-cells, 8
Follicular, 17 Classical Hodgkin and one Non-Hodgkin that couldn’t be clas-
sified neither as Diffuse Large B-cells nor as Follicular) were prospectively
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recruited between September 2012 and December 2015.

Inclusion criteria were absence of contraindications to MRI (such as
claustrophobia and implanted pacemakers or neurostimulators), histolog-
ically confirmed newly diagnosed FDG-avid lymphoma, age over 14 and
performance status with values from O to 2 according to ECOG scale. The
study was approved by the Ethics Committee of our hospital and all patients,
or their parents if minors, signed written consent forms.

All patients underwent both WB-MRI and ['*F]-PET within a maximum
of one week difference. A whole-body "respiratory-gated" diffusion MR 1.5
Tesla (T) (Avanto; Siemens Healthcare, Erlangen, Germany) protocol using
exclusively a single-shot spin-echo echo-planar, introduced in [118], was ap-
plied in order to minimize slice-position mismatch between different b-values
and different excitations. Moreover, the applied fat suppression approach of
STIR gives more homogeneous fat saturation because of its insensitivity to
magnetic field heterogeneity [107]. The entire total body MR imaging with
5 sequences was performed within 7 to 8 stations. However, in order to
improve the SNR of the calculated ADC map, measurements in the three
orthogonal gradient directions are obtained and the signals are averaged
(producing the corresponding b-value trace images).

The data set consisted of 3D images derived by scanning each patient with
5 b-values: 20,50,150,400 and 800 (s/ mm?). Three different combinations of
image sequences were examined in each experiment, changing each time the
number of b-values in order to assess on the efficient number to be used in
clinical settings. Whenever sequences of size three are examined the b-values
of 50,400 and 800 (s/ mm?) are used, whereas when the size of sequence is
four b-values of 50,150,400 and 800 (S/mmz] are used. For a sequence of
size 5 apparently all the b-values are used. The above configurations hold
for every patient. The image size was 130x106x22 for every patient, with a
pixel resolution of 2.46x2.46mm? in the axial plane and 5mm? in the z-axis.
Each image had been manually annotated by experts (A.R.) to indicate the
contour of the tumor (see figure 4.3).

5.3 Results

Automatic Classification of Lymphoma Type

We further examined the potential of automatically classifying by the imaging
statistical features the patients into the basic types of lymphoma. The per-
formance of the proposed method JointRefl was compared against all other
examined registration methods and NoReg. In each case, the statistical
features were extracted from both z. and z, parametric maps (in case of
JointRef1l Z. map was used as the "extracellular diffusion" map). The best
combination of features for all the methods turned out to be a combination
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Method Feature from ADC component Hodgkin Non-Hodgkin
recall precision recall precision overall accuracy

NoReg i, iy 71.44 6585 60.14 70.37 65.79
MIGroup Ze , Zy 65.38 60.38 54.89 62.71 60.14

MIRef1 Zc . Zy 71.95 67.04 61.14 70.34 66.54
PhyGroup Ze , Iy 73.75 65.74 58.99 72.28 66.37
PhyRefl Ze . Zy 68.43 68.70 65.96 70.08 67.20
JointRef1 Zc ., Zy 84.26 70.72 62.39 83.09 73.32

Table 5.1: Classification results on patients with HD and NH type of lymphoma, derived by the examined
methods using 3 b-values. All the results were derived by the LDA-based classifier in a supervised manner.
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Figure 5.1: The overall classification accuracy for each of the examined methods, over the number of
b-values.

of the first-order histogram parameters of both z. and z, images.

The specific experiment’s goal was to assess the effect of registration on
revealing the underlying physiology, that would help us differentiate between
HD and NH disease. In each case, classification was performed by the LDA
classifier, using the extracted features as its input and the labels derived by
biopsy to guide the classifier. In table 5.1 we demonstrate the classification
results, where one can see that JointRefl outperformed all the rest. Note
that these results were derived using a sequence of 3 b-values, which was
the configuration that gave the best results for PhyRefl. For all the methods,
except the proposed method (JointRef1) there was a drop on the classification
accuracy over the increase in the number of b-values. However, in case of
JointRef1, the classification accuracy increased when 4 b-values were used,
whereas the use of 5 b-values derived slightly worst results than in the case
of both 3 and 4 b-values (see figure 5.1). For every combination of b-values,
the overall classification accuracy was higher with JointRefl than with any
of the rest methods (71.72%, 73.32% and 70.74% with JointRefl, whereas
65.94%, 65.79% and 65.91% with NoReg).
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Correlation between Diffusion-based Imaging Biomarkers
and Deauville Scores

The last result we seeked for was the correlation between DW images and PET
scans in characterizing tumor staging. More specifically, we wanted to assess
the correlation between the afore-mentioned statistical features extracted
by the afore-described diffusion-based parametric maps and the Deauville
scores, that are derived by PET scans and consist of an indication of the
severity of the disease, or in other words the stage of the tumor. Furthermore,
we examined this correlation by using parametric maps computed by data
acquired on two different phases of the treatment cycle; after two cycles of
chemotherapy and in the end of the treatment. Deauville scores were given
to the patients in each of these two phases. Let’s denote with F.; the feature
vector extracted in such a way that is relative to the time instant after two
cycles of chemotherapy, and with F,,; the feature vector extracted in such a
way that is relative to the end of the treatment. F,.,, were either the difference
in statistical features of the entire tumor region between the onset of the
treatment and the day of the exam after 2 cycles of chemotherapy or their
actual values the day of that latter exam. Similarly, F,,; was based on either
the difference in the statistical features between the onset of the treatment
and the end of the treatment or their values in the end of the treatment, as
well as the difference in them between the day of the exam after 2 cycles of
chemotherapy and the end of treatment. Furthermore, the corresponding
Deauville scores are denoted by Dy.y; et @aNd Depg reqt TESPECtively. What we
want to assess is the ability of the diffusion-based biomarkers to characterize
the response to therapy, therefore we are interested in the correlation between
Feyer and Doeyep reqr» @s Well the correlation between F,,; and Deyg e The
correlation scores were based on Pearson’s correlation criterion. We set a
threshold of 0.5, above which a correlation score was assumed to indicate
clinical significance, in combination to a p-value lower than 0.05.

After two cycles of chemotherapy Significant correlation of diffusion-
based features and PET-based staging scores were found at this phase of the
treatment for both NoReg and JointRef1 case. In case of NoReg, the difference
between the value of the 75 percentile of the histogram of the tumor’s region
in 7., in the beginning of the treatment and at the study after two cycles
of chemotherapy, was found to be the feature giving the best correlation
score with D,y rq. That correlation was above the threshold of 0.5 only
for the case of 5 b-values. However, when we tried to predict Dy req USIng
this specific feature, prediction failed. We assess the prediction success
by computing the correlation between the predicted (Da¢yci preq) and the real,
PET-based Deauville scores (Dycycr req). We consider an accurate prediction
only the one in which the latter correlation was meeting the requirements of
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a clinically siginificant correlation described above.

On the other hand, the difference between the value in the kurtosis of
the tumor’s region in Z,, in the beginning of the treatment and at the study
after two cycles of chemotherapy, was found to be the feature giving the
best correlation score with Dy, .a; in case of JointRefl. That significant
correlation was found only using more than three b-values, with the case of 4
b-values giving the best results. This finding implies that b — value = 150s/mm?
aids in a more accurate estimation of an diffusion-based parametric map. On
the other hand, moving from four to five b-values (adding b — value = 20s/mm?)
didn’t improve correlation, which might indicate that low b-values might
not fit well to the physiological model. In the same time, using this feature
to predict Dy e did result in a set of predicted Deauville scores showing
significant correlation with the real ones (see table 5.2).

However, we observed that using a combination of some features showing
high correlation with D,y ,.s improved the prediction of the Deauville scores
and this was the case only for JointRefl. We applied a linear regression
model using various combinations of features extracted either from z. or z, or
Z. or Zy. Accurate prediction was achieved only in case of using the parametric
maps derived by our method, while no prediction could be attained using
the parametric maps derived in the NoReg case. The best prediction score
using our method was achieved when using four different features; the mean
and mode values of Z. after two cycles of chemotherapy, in combination with
the difference in value between the skewness,as well as the kurtosis of the
tumor’s intensity distribution in 7., in the onset of the treatment and two
cycles of chemotherapy later, using 4 b-values. In that case, the correlation
was corr = (.71 between predicted and actually Deauville scores, with a p-
value=0.00005. In the same time, the root mean squared fitting error was
0.57 with a standard deviation of 0.69, and a value of the coefficient of
determination R? = 0.68, which means that linear regression explains 68% of
the variability in the Deauville scores. The corresponding number in case
of NoReg, using the best combination of features towards prediction in this
case, were 1.11, 1.52 and 0.37 respectively. The results on trying to predict
Deauville scores after two cycles of chemotherapy can be seen in table 5.3.
Finally, prediction was improved improved, in terms of a decreased mean
RMSE and an increased R?, when using 4 instead of 3 b-values, while it
decreased using 5 instead of 4 b-values, still the case of 5 b-values yielded
better results that using 3 b-values (see plot left in figures 5.2 and 5.3
respectively).

In the end of the treatment: Significant correlation was found between
the mean value of the tumor’s region in 2. and D¢, req (corr= —0.78 with
p-values 0.039), while no significant correlation was found for any statistical
feature extracted by either 7. or z, (NoReg case). However, even higher
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Feature

Method change in 75 percentile of z. (5 b-values) change in kurtosis of z, (4 b-values)

corr.score p-value pred.score p-value corr.score p-value pred.score p-value

NoReg 0.518 0.0067 0.267 0.1875 -0.377 0.0575 0.307 0.1269
JointRef1 0.295 0.1437 0.435 0.0264 -0.516 0.00070 0.511 0.0076

Table 5.2: Statistical features yielding the highest correlation scores with tumor staging after two cycles of
chemotherapy (D,.;), shown along with their p-values, for the case of each method (change in 75 percentile of
tumor region’s histogram in z. for NoReg and change in kurtosis of tumor region’s histogram in z, for JointRef1).
The last two columns show the correlation between the corresponding predicted Deauville scores using the specific
diffusion-based features and the real Deauville scores for the patients.

2

Features Corr.score p-value mean RMSE std of RMSE R-
NoReg mean/mode of Z. and change in skewness and kurtosis of Zy 0.278 0.1661 1.112 1.524 0.369
JointRefl mean/mode of Z. and change in skewness and kurtosis of Zy 0.709 0.00005 0.570 0.699 0.675

Table 5.3: Results on prediction of Deauville scores after 2 cycles of chemotherapy (D,.). Corr.score
corresponds to the correlation between predicted staging scores and actual PET-based ones. RMSE stands for root
mean squared error after applying linear regression between the values of the mentioned features and Deauville
scores, while R? corresponds to the coefficient of determination. These results were derived using 4 b-values.

Feature

Method mean of z. (4 b-values) change in mean of z. (4 b-values) change in mode of z, (4 b-values)

corr.score p-value pred.score p-value corr.score p-value pred.score p-value corr.score p-value pred.score p-value

NoReg -0.456 0.3039 0.645 0.1178 -0.258 0.5766 0.643 0.1195 -0.872 0.0105 0.642 0.1195
JointRefl ~ -0.780 0.0386 0.827 0.0217 -0.786 0.0362 0.877 0.0095 -0.970 0.0003 0.877 0.0095

Table 5.4: Statistical features yielding the highest correlation scores with tumor staging in the end of the
treatment (D, ,..;), shown along with their p-values. The last two columns again show the correlation between
the corresponding predicted Deauville scores using the specific diffusion-based features and the real Deauville
scores for the patients.

Features Corr.score p-value mean RMSE std of RMSE R?
NoReg mean and change of mean in Z. and change in mode of z, 0.645 0.1178 1.766 2.3285 0.828
JointRefl mean and change-1 of mean in Z. and change in mode of Z, 0.827 0.0217 0.2019 0.2245 0.949
JointRef1 change-2 in skewness and kurtosis of Zy 0.880 0.0089 0.1037 0.1327 0.912

Table 5.5: Results on prediction of Deauville scores in the end of treatment (D,,,). As in table 5.3, Corr.score
corresponds to the correlation between predicted staging scores and actual PET-based ones. RMSE stands for root
mean squared error after applying linear regression between the values of the mentioned features and Deauville
scores, while R? corresponds to the coefficient of determination. Change-1 corresponds to the change in the
values between the onset and the end of the treatment, while change-2 corresponds to the change between the
study after two cycles and the end of the treatment. These results were derived using 4 b-values.

correlation was found when examining the correlation using as feature the
difference between the mean value in 7. in the beginning of the treatment
and the corresponding one in the end of the treatment, as well as using
as feature the difference between the mode value in Z, in the beginning
of the treatment and the corresponding one in the end of the treatment
(corr = —0.79 and corr = —0.97 respectively, with corresponding p-values 0.036
and 0.0003). That latter correlation was also found using the corresponding
values extracted by 7z, (NoReg case), though correlation was lower than
in case of JointRef1 (see table 5.4). The negative sign in these correlation
scores indicate an inverse relation between the quantities, i.e. when the
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mean diffusion value in the parametric maps increase from one study to
the other, the staging score should decrease and vice versa. Finally, we
examined the correlation to D,,; using an F,,; based on the difference in the
values of the statistical features extracted by the parametric maps after two
cycles of chemotherapy and in the end of the treatment. In this case, no
significant correlation was found, though using the difference between the
kurtosis of the tumor’s histogram in 7, gave a quite high correlation score
with the p-value being a bit above the threshold of 0.05 (corr=0.71 with
p-value=0.0771).

Prediction of staging scores of the patients in the end of the treatment
was successful for the case of JointRefl, using two different combinations
of features related to the end of treatment. In the first scenario, using
only the difference (between the study in the end of 2 cycles and the study
in the end of treatment) in the skewness and the kurtosis of the tumor’s
intensity distribution in Z,, the correlation between the predicted D,,; and
the actual D,,; scores was corr = (.88 with p-value=0.009, while no accurate
prediction was achieved using any combination of features relative to the
difference in values between the study in the end of 2 cycles and the study
in the end of treatment in case of NoReg. That successful prediction with
JointRef1-based features, was accompanied by a root mean squared fitting
error of 0.104 (standard deviation of 0.137) and a value for the coefficient of
determination of R* = 0.91, while the corresponding values in case of NoReg
were 0.419 (standard deviation of 0.515) and 0.57 respectively. Then, in
the second successful scenario, prediction in JointRef1 case was achieved
using the following three features: the difference in the mean tumor value
in Z, between the onset of the treatment and the end of the treatment, the
corresponding difference in the mode value of the tumor in Z, and the actual
mean tumor value in Z. in the study in the end of the treatment. Again no
accurate prediction was attained using any combination of features derived
by NoReg. In this second scenario, the root mean squared fitting error
was 0.209 (standard deviation of 0.225) and a value for the coefficient of
determination of R? = 0.94, while the corresponding values in case of NoReg
were 1.178 (standard deviation of 2.329) and 0.83 respectively. Moreover,
all the afore-mentioned results, which were the best achieved, were derived
using 4 b-values. Though the coefficient of determination was higher in this
second scenario than in the first one, we observed that a highly accurate
prediction was achieved in term of the fist scenario using 5 b-values as
well, which was not the case when using 5 b-values in the second scenario.
The best results regarding the prediction of Deauville scores in the end of
treatment can be seen in table 5.5.

Regarding the usefulness of using a bigger number of b-values, we noticed
again an improvement on the results when we use 4 instead of 3 b-values
(when we add b-value = 150s/ mm?), however in the case of 5 b-values (adding
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Figure 5.2: Plots of the mean RMSE of predicting Deauville scores.

In the left we plot the results for predicting Dycycr,reqr. In the middle we plot the results of predicting D4 rer USIing
as feature combination the mean value in the tumor region a z. image, together with the change of mean in the
same image from the onset of the treatment until its end, as well and change in mode of a z, image again from the
from the onset of the treatment until its end. Finally in the right plot we show the results of predicting D4 rear,
this time using as a feature combination the change in kurtosis and skewness of the histogram computed in the
tumor region in a z, image, from the study after 2 cycles of therapy until the end of treatment.
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Figure 5.3: Plots of the R?> value when predicting Deauville scores.

In the left we plot the results for predicting Dycycr,reqr- In the middle we plot the results of predicting D4 re USing
as feature combination the mean value in the tumor region a z. image, together with the change of mean in the
same image from the onset of the treatment until its end, as well and change in mode of a z, image again from the
from the onset of the treatment until its end. Finally in the right plot we show the results of predicting D.ug rear,
this time using as a feature combination the change in kurtosis and skewness of the histogram computed in the
tumor region in a z, image, from the study after 2 cycles of therapy until the end of treatment.

on top b-value = 20s/mm?) no further improvement was observed, though
results using 5 b-values were in general better than using 3 b-values (see
middle and right plots in figures 5.2 and 5.3, in terms of decreasing mean
RMSE and increasing R? respectively). These latter results might indicate
that on one hand b-values higher than the value of 50s/mm? fit better to the
physiological model describing the diffusion process in DWI, while on the
other hand small b-values (<50s/mm?) don’t fit well on the diffusion model.
To sum up, the case of 4 b-values was the one the gave the best correlation
results overall.

5.4 Discusion

This study highlights the importance of image registration as a motion cor-
rection approach in DWI, towards computing meaningful imaging biomarkers
for patients with lymphomas. The proposed registration method is based
on an explicit computation of an ADC map of an "extracellular diffusion”
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nature (denoted as Z, map in our framework), which is a smooth image due
to spatial constraints imposed on similar tissue regions. This approach is
different to the common way of computing an ADC map (see Eq.2). Two
experiments were designed to evaluate the registration performance, based
on simulated and real data respectively. In terms of a reconstruction error
experiment using simulated data, JointRefl outperformed all the rest in
recovering more accurately both the simulated deformation fields applied to
the simulated DWI sequences, as well as the simulated ADC based on which
the simulated sequence was created. Moreover, JointRefl showed the equally
good to PhyGroup and PhyRef1 results on the fitting error to the diffusion
model using the real dataset. PhyGroup and PhyRef1 use the fitting to the
diffusion model criterion in their energy formulation. Regarding whether a
preselection of a reference space is a better approach, we noticed that the
methods registering the images into an intermediate reference space gave
better results, as MIGroup performed better than MIRefl in all experiments,
and PhyGroup yielded better results than PhyRefl, except on the fitting
error.

The latter result validated the strength of JointRef1 in correcting motion
in DWI by ensuring consistency on the diffusion model. As a next step, we
examined the effect of motion correction on deriving meaningful diffusion-
based biomarkers. We examined the correlation of such biomarkers with
both the histopathological profile of the patients and their PET scans. The
former relationship was assessed through a classification experiment, in
which patients were automatically classified based on the type of the lym-
phoma (HD or NH), using statistical features extracted by the derived by
JointRegRefl ADC maps (candidate diffusion-based biomarkers). The results
in this experiment, signified the usefulness of our proposed method, as it
yielded an increase on the overall classification accuracy of approximately
7.5%, compared to the NoReg case where no image registration occurred. The
physiological information retrieved by JointRefl might thus correspond to
some degree with the information extracted by the histopathological analysis
on the patient. To the best of our knowledge, no other study had ever looked
on this relationship. Those promising results indicate that an accurate ADC
map might facilitate physicians to assess the disease in a pre-treatment
stage non-invasively. However, further investigation on such a classifica-
tion ability through DWI should take place. The reproducibility of these
results, by adding more patients in the database, is a matter that should be
examined, as well the influence feature selection process has on them. For
example, one could consider learning the optimal features in a supervised
or unsuperivsed manner, or consider extracting discriminative features by
approximating the intrinsic dimensionality from the subspace spanned by
the tumor.

Furthermore, in terms of the correlation between DWI and PET, our scope
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was to examine whether there is any diffusion-based feature that shows a
significant correlation with the PET-based Deauville scores. Two different
phases of the patients’ treatment process were examined, the first one being
the study after two cycles of chemotherapy, while the second one was the as-
sessment of the stage of the patient’s tumor after treatment (end of treatment).
What we observed was that the Deauville scores were highly correlated with
the change in the value of the statistical diffusion-based features, from one
study to the next one. Therefore, the Deauvilles scores after two cycles of
therapy were significantly correlated with the difference in the kurtosis of
the histogram computed in the tumor’s regions in the z, image, while the
same exact feature showed high correlation to the corresponding Deauville
scores in the end of the treatment. High correlations were also found for
the case of the change in the skewness of the histogram. The importance of
these two specific features in assessing tumor’s stage was confirmed by a
high correlation between predicted based on a combination of these features
Deauville scores and the real Deauville scores of the patients, a correlation
that was the highest among all the different combinations examined in case
of both after two cycles of chemotherapy and end of treatment staging scores.
As Deauville scores denote the stage of lymphoma, this result indicates a
potential of such biomarkers to assess lymphoma staging non-invasively.
This hypothesis though is in constrast to Lin et al. [118], who reported a
limited power of DWI in differentiating low-grade from high-grade lymphoma
sub-types. However, no registration had been applied on that study (similar
to NoReg scenario in our work). Looking though on tables 5.2 and 5.4, one
can see that the majority of the features showing good correlation results
were derived by JointRefl instead of NoReg. What is also interesting noticing
is the negative correlation between the mean of tumor’s intensities and the
grade of lymphoma'’s severity, which is in correspondence with the belief that
high malignant tumors show low ADC values. This indication of a correlation
between DWI and FDG-avid PET strengthens the argument of using the for-
mer one as the non-invasive complementary to the state-of-the-art modality
for lymphoma staging, or even replacing it. PET imaging is associated with
a non-negligible radiation dose, which is of particular concern for younger
patients, because of the risk of radiation-induced secondary malignancies.

There have been studies that, similarly to ours, demonstrated a degree
of efficacy of DWI in tumor staging. Specifically, Kwee et al. [109] had
compared whole-body DW-MRI to computed tomography (CT) for the initial
staging of 31 patients with HD or NH. The authors reported a 75% agree-
ment between these two modalities, whereas in 6 patients DW-MRI classified
them correctly to a higher stage than CT. A similar study of 17 patients
with HD and aggressive NH was performed by Gu et al.[66] in which the
newly-introduced modality was compared to FDG-PET, reporting a very high
percentage of agreement (in 88% of the patients) in tumor staging between
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these two modalities too. The latter study highlighted the additional value of
DWI, as it raised the true-positive detection accuracy of whole-body MRI from
89% to 97%. A comparison of DWI to the FDG-PET/CT gold standard for
HD and NH lymphoma pre-treatment staging was made also by Stephane et
al.[194] with encouraging findings (Cohen’s kappa coefficient of 0.97, with a
p-value of less than 0.0001). 23 patients were examined and a size criterion,
combined with the mean of ADC were used to consider node involvement.
Moreover, Mayerhoefer et al.[133] concluded in their study that DWI was
slightly inferior to [!8F]-FDG-PET with respect to pre-therapeutic regional
assessment and staging in 100 patients with FDG-avid lymphomas. The
evaluation of lymph node or lesion involvement was based on visualizing
a high signal and an increased high signal in DW images with b-values of
50 and 1000s/mm? respectively or a high signal in the DW image of small
b-value, together with a low corresponding value on the ADC map. Even
more encouraging results were published by Balbo et al.[11], where the
authors assessed the accuracy of whole-body DWI in defining lymphoma
disease stage in 41 patients. The criterion used for node-involvement in case
of whole-body DWI was only hyperintensity on b= 1000s/mm? DW images.

Finally, regarding the number of b-values that are adequate for optimally
computing the diffusion model, we did observe a significant improvement on
the results with the increase of b-values used from three to four, indicating
that the additional use of a b-value of a value higher than 50s/mm? results
in a better fitting to the physiological model. We didn’t observe though a
similar patter when adding a fifth b-value of 20s/mm? value. This might be
due to the small b-value, that is in the range that the physiological model
is sensitive to perfusion, or it could be attributed to the fact that all the
examined registration methods only approximate a consistency on the global
dependencies among the images in the sequence. For more accurately im-
posing global consistency on the diffusion model, high-order cliques should
be considered in the MRF formulation of the method.






Chapter 6

Conclusion

This thesis is concluded by summarizing the contributions and drawing
some potential directions for future work.

6.1 Contributions

The principal contribution of this thesis is the development of a method to
efficiently compute spatially smooth parametric maps that depict the physi-
ological or pharmacokinetic process taking place during image acquisition
and which could be used as imaging biomarkers to the evaluation of the
disease or the response to chemiotherapy. The experimental paradigm in
this doctoral work was the computation of a map that depicts the gradient
of the diffusion of water molecules in the body (ADC value). Our novel
method, presented in chapter 4, simultaneously co-registers non-linearly
3D diffusion-weighted MR images and estimates the ADC map by imposing
spatial constraints on its calculation. Statistical analysis on the ADC map
computed by our method showed some very promising results, presented in
chapter 5, that strengthen the belief of promoting the ADC as an imaging
biomarker towards evaluating lymphoma patients and their response to
therapy.

Our joint deformable group-wise registration and parameter estimation
method was built upon our first group-wise deformable registration method,
presented in chapter 3, which incorporated a physiological model describing
the diffusion process in its framework. That latter registration framework
was formulated as an N-layer graphical model, whereas the former one as
an N + l-layer. Intra-layer edges encoded smoothness constraints for each
problem while inter-layer imposed consistency between successive images
in time. The resulting formulations inherit modularity and scalability. The
corresponding objective function in each of the proposed registration meth-
ods is modular in the sense that various detectors/similarity metrics can be
considered and addressed under a common optimization framework.
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The main message of this dissertation is threefold. Firstly, image registra-
tion does help to reduce errors in ADC calculation and further improves the
quality of the ADC data. Secondly, a model-based objective function instead
of a model-free one renders registration more robust with respect to avoiding
a sub-optimal solution. That embedded to the registration framework model
should be though a valid physiological or pharacokinetic model and the
one we used in our work related to the diffusion process taking place in
DWI proved to be one. Thirdly, registration and the estimation of a within
tissues smooth quantitative parameter benefit great from each other, as the
joint estimation of both derived better results than when estimating them
sequentially. As a last more general message, we could say that the discrete
formulations coupled with efficient but not restrictive approximate schemes
could lead to powerful and versatile algorithms that can tackle with accuracy
the registration problem.

6.2 Future Work

During this thesis we have provided promising responses, yet various exten-
sions are under consideration to push forward the scope of our work. Let us
discuss briefly, five of them.

1. The success of our joint registration and parameter estimation frame-
work can be attributed to the imposition of a term that ensures spatial
within tissue smoothness on the ADC map. However, that term tends
to oversmooth the image in some cases, i.e. the borders among the
various tissues become blurred in some patients. Incorporating a term
that encourages intra-tissue smoothing in preference to inter-tissue
smoothing seems a promising way to improve the obtained results. Per-
ona and Malik [156] proposed a scale-space technique using a diffusion
process that results images with sharp region boundaries, while a high
quality edge detector can be obtained which successfully exploits global
information. Such a technique could be potentially incorporated into
our framework in order to achieve the afore-mentioned goal.

2. Another rational extension of our group-wise registration framework
would be the use of spatial priors on the deformation fields, as well
as on the parametric map, that would have a high-order dependency,
instead of a pair-wise that is the case in the current implementation.
Especially in the case of the ADC variables such an addition would be
very beneficial since higher order interactions in image models allow for
abstracting beyond pixels or voxels, building upon larger scale image
attributes like edges, and for context and complex structures to be
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captured. An energy formulation that would include high-order data
term (as it is the case in the current formulation), as well as high-order
regularization terms could be solved through Dual Decomposition by
assigning the regularization terms to a slave using an optimization
scheme that could tackle high-order regularization, like the Parsimo-
nius labeling scheme proposed by Dokania and Pawan Kumar [48].

3. The validation of our non-linear group-wise registration methods had
been difficult since a gold standard is not easily attainable. Researchers
are forced to use a variety of surrogates, from simplified computer simu-
lated images, to difficult experiments involving implantation of fiducials
into the subject [231, 231]. An examination of different validation crite-
ria than the ones used in this doctoral thesis, such as the Cramér-Rao
lower bound (CRLB) [32], would strengthen even more the evaluation
of our methods.

4. In chapter 5 we presented results on the correlation between PET-based
recommendation scores and features extracted by the ADC map. These
results indicate a correlation between the two modalities (PET and
DWI) on the patient level. A more detailed analysis could involve multi-
modal registration among PET and DW images of the same patient,
in order to fuse metabolic with anatomic information derived by the
two modalities respectively. To this end, a first step would be to create
whole body images of the ADC, which can be achieved by applying the
stiching algorithm proposed by Glocker et al. [59]. Then the multi-
modal registration could be approached by the method proposed by
Wachinger and Navab [216] which is based on the creation of entropy of
laplacian images of both modalities, in order to allow the use of simple
similarity measures, such as the intensity difference, and thus avoid
the use of more sophisticated metric that would increase computational
complexity.

5. Incorporating a learning process into our frameworks is another promis-
ing direction. For example, based on the groundtruth on the tumor
location and shape (tumor masks) as well as the groundtruth on the
type of lymphoma present in the image (disease labels), provided by the
experts, we could incorporate a segmentation task in the registration
framework. Assuming a probability function on the candidate labeling
for each control point of the form x,(/) where / €0,--- ,M — 1, M denoting
the number of different types of lymphomas, we would wish to penalize
all segmentations that go against prior information on the frequency
of appearance of a specific type of tumor on the body. Such probabili-
ties can be learned using either a machine learning method, such as
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support vector machines (SVM) or a deep learning technique, such as
Convolutional Neural Networks (CNNs).
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Résumé: La présente thése propose des méthodes pour I'estimation du mouvement des organes d'un patient au
travers de l'imagerie tomographique. Le but est la correction du mouvement spatio-temporel sur les images
médicales tomographiques. En tant que paradigme expérimental, nous considérons le probléme de I'estimation du
mouvement dans l'imagerie IRM de diffusion, une modalité d'imagerie sensible a la diffusion des molécules d'eau
dans le corps. Le but de ces travaux de thése est 1'évaluation des patients atteints de lymphome, car I'eau diffuse
différemment dans les tissus biologiques sains et dans les l1ésions. L'effet de la diffusion de I'eau peut étre mieux
représenté par une image paramétrique, grace au coefficient de diffusion apparente (image a ADC), créé sur la base
d'une série d'images DWI du méme patient (séquence d'images 3D), acquises au moment de la numérisation. Une
telle image paramétrique a la possibilité de devenir un biomarqueur d'imagerie d'IRM et de fournir aux médecins
des informations complémentaires concernantl'image de FDG-PET qui est la méthode d'imagerie de base pour le
lymphome et qui montre la quantité de glucose métabolisée.

Nos principales contributions sont au nombre de trois. Tout d'abord, nous proposons une méthode de recalage
d'image déformable en groupe spécialement congue pour la correction de mouvement dans I'IRM de diffusion, car
elle est guidée par un modeéle physiologique décrivant le processus de diffusion qui se déroule lors de I'acquisition
de I'image. Notre méthode détermine une image a ADC de plus grande précision en termes de représentation du
gradient de la diffusion des molécules d'eau par rapport al’ image correspondante obtenue par pratique courante
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Abstract: This doctoral thesis develops methods to estimate patient's motion, voluntary and involuntary (organs'
motion), in order to correct for motion in spatiotemporal tomographic medical images. As an experimental
paradigm we consider the problem of motion estimation in Diffusion-Weighted Magnetic Resonance Imaging (DWI),
an imaging modality sensitive to the diffusion of water molecules in the body. DWI is used for the evaluation of
lymphoma patients, since water diffuses differently in healthy tissues and in lesions. The effect of water diffusion
can be better depicted through a parametric map, the so-called apparent diffusion coefficient (ADC map), created
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parametric map has the potentiality to become an imaging biomarker in DWI and provide physicians with
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terms of classifying them into the different types of the disease. Third, we show that a correlation between DWI and
FDG-PET should exist by examining the correlation between statistical features extracted by the smooth ADC map
derived by our deformable registration method, and recommendation scores on the malignancy of the lesions, given
by experts based on an evaluation of the corresponding FDG-PET images of the patient.
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